Applications of \(T^r\)-strongly convergent sequences to Fourier series by means of modulus functions

IF 0.6 3区 数学 Q3 MATHEMATICS
S. Devaiya, S. K. Srivastava
{"title":"Applications of \\(T^r\\)-strongly convergent sequences to Fourier series by means of modulus functions","authors":"S. Devaiya,&nbsp;S. K. Srivastava","doi":"10.1007/s10474-024-01397-z","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, Devaiya and Srivastava [3] studied the <span>\\(T^r\\)</span>-strong convergence of numerical sequences and Fourier series using a lower triangular matrix <span>\\(T=(b_{m,n})\\)</span>, and generalized the results of \nKórus [8]. The main objective of this paper is to introduce <span>\\([T^r,G,u,q]\\)</span>-strongly convergent sequence spaces for <span>\\(r\\in\\mathbb{N}\\)</span>, and defined by a sequence of modulus functions. We also provide a relationship between <span>\\([T,G,u,q]\\)</span> and <span>\\([T^r,G,u,q]\\)</span>-strongly convergent sequence spaces. Further, we investigate some geometrical and topological characteristics and establish some inclusion relationships between these sequence spaces. In the last, we derive some results on characterizations for <span>\\({T}^{r}\\)</span>-strong convergent sequences, statistical convergence and Fourier series using the idea of <span>\\([T^r,G,u,q]\\)</span>-strongly convergent sequence spaces.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"172 1","pages":"187 - 205"},"PeriodicalIF":0.6000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01397-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, Devaiya and Srivastava [3] studied the \(T^r\)-strong convergence of numerical sequences and Fourier series using a lower triangular matrix \(T=(b_{m,n})\), and generalized the results of Kórus [8]. The main objective of this paper is to introduce \([T^r,G,u,q]\)-strongly convergent sequence spaces for \(r\in\mathbb{N}\), and defined by a sequence of modulus functions. We also provide a relationship between \([T,G,u,q]\) and \([T^r,G,u,q]\)-strongly convergent sequence spaces. Further, we investigate some geometrical and topological characteristics and establish some inclusion relationships between these sequence spaces. In the last, we derive some results on characterizations for \({T}^{r}\)-strong convergent sequences, statistical convergence and Fourier series using the idea of \([T^r,G,u,q]\)-strongly convergent sequence spaces.

通过模函数将 $$T^r$$ 强收敛序列应用于傅里叶级数
最近,Devaiya 和 Srivastava [3] 使用下三角矩阵 \(T=(b_{m,n})\)研究了数值序列和傅里叶级数的 \(T^r\)-强收敛性,并推广了 Kórus [8] 的结果。本文的主要目的是引入 \([T^r,G,u,q]\) - \(r\in\mathbb{N}\) 的强收敛序列空间,并由模函数序列定义。我们还提供了 \([T,G,u,q]\) 和 \([T^r,G,u,q]\) - 强收敛序列空间之间的关系。此外,我们还研究了这些序列空间的一些几何和拓扑特征,并建立了它们之间的一些包含关系。最后,我们利用 \([T^r,G,u,q]\) -强收敛序列空间的思想推导出一些关于 \({T}^{r}\) -强收敛序列、统计收敛和傅里叶级数的特征的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信