Finite beta-expansions of natural numbers

Pub Date : 2024-01-31 DOI:10.1007/s10474-024-01400-7
F. Takamizo
{"title":"Finite beta-expansions of natural numbers","authors":"F. Takamizo","doi":"10.1007/s10474-024-01400-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\beta&gt;1\\)</span>. For <span>\\(x \\in [0,\\infty)\\)</span>, we have so-called a <i>beta-expansion</i> of <span>\\(x\\)</span> in base <span>\\(\\beta\\)</span> as follows: \n</p><div><div><span>$$x= \\sum_{j \\leq k} x_{j}\\beta^{j} = x_{k}\\beta^{k}+ \\cdots + x_{1}\\beta+x_{0}+x_{-1}\\beta^{-1} + x_{-2}\\beta^{-2} + \\cdots$$</span></div></div><p>\nwhere <span>\\(k \\in \\mathbb{Z}\\)</span>, <span>\\(\\beta^{k} \\leq x &lt; \\beta^{k+1}\\)</span>, \n<span>\\(x_{j} \\in \\mathbb{Z} \\cap [0,\\beta)\\)</span> for all <span>\\(j \\leq k\\)</span> and \n<span>\\(\\sum_{j \\leq n}x_{j}\\beta^{j}&lt;\\beta^{n+1}\\)</span> for all <span>\\(n \\leq k\\)</span>. \nIn this paper, we give a sufficient condition (for <span>\\(\\beta\\)</span>) such that \neach element of <span>\\(\\mathbb{N}\\)</span> has a finite beta-expansion in base <span>\\(\\beta\\)</span>. \nMoreover we also find a <span>\\(\\beta\\)</span> with this finiteness property \nwhich does not have positive finiteness property.\n</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01400-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\beta>1\). For \(x \in [0,\infty)\), we have so-called a beta-expansion of \(x\) in base \(\beta\) as follows:

$$x= \sum_{j \leq k} x_{j}\beta^{j} = x_{k}\beta^{k}+ \cdots + x_{1}\beta+x_{0}+x_{-1}\beta^{-1} + x_{-2}\beta^{-2} + \cdots$$

where \(k \in \mathbb{Z}\), \(\beta^{k} \leq x < \beta^{k+1}\), \(x_{j} \in \mathbb{Z} \cap [0,\beta)\) for all \(j \leq k\) and \(\sum_{j \leq n}x_{j}\beta^{j}<\beta^{n+1}\) for all \(n \leq k\). In this paper, we give a sufficient condition (for \(\beta\)) such that each element of \(\mathbb{N}\) has a finite beta-expansion in base \(\beta\). Moreover we also find a \(\beta\) with this finiteness property which does not have positive finiteness property.

分享
查看原文
自然数的有限贝塔展开式
让 \(\beta>1\).对于在[0,infty]中的x,我们有所谓的在基数(beta)中对x的贝塔展开,如下所示$$x= \sum_{j \leq k} x_{j}\beta^{j} = x_{k}\beta^{k}+ \cdots + x_{1}\beta+x_{0}+x_{-1}\beta^{-1} + x_{-2}\beta^{-2} + \cdots$$ 其中 \(k \in \mathbb{Z}\), \(\beta^{k} \leq x <;\),\(x_{j}\in \mathbb{Z} \cap [0,\beta)\) for all \(j \leq k\) and\(\sum_{j \leq n}x_{j}\beta^{j}<\beta^{n+1}\) for all \(n \leq k\).在本文中,我们给出了一个充分条件(对于 \(beta\)),使得 \(mathbb{N}\)的每个元素在基\(beta\)中有一个有限的β展开。此外,我们还可以找到一个不具有正有限性的具有这种有限性的 \(\beta\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信