High-performance photocatalytic reduction of Cr(VI) using a retrievable Fe-doped WO3/SiO2 heterostructure.

0 MATERIALS SCIENCE, MULTIDISCIPLINARY
Natkritta Boonprakob, Duangdao Channei, Chen Zhao
{"title":"High-performance photocatalytic reduction of Cr(VI) using a retrievable Fe-doped WO<sub>3</sub>/SiO<sub>2</sub> heterostructure.","authors":"Natkritta Boonprakob, Duangdao Channei, Chen Zhao","doi":"10.1186/s11671-023-03919-0","DOIUrl":null,"url":null,"abstract":"<p><p>The enhancement of the photocatalytic performance of pristine WO<sub>3</sub> was systematically adjusted due to its fast recombination rate and low reduction potential. A designed heterostructure photocatalyst was necessarily synthesised by Fe<sup>3+</sup> metal ions doping into WO<sub>3</sub> structure with and composition modification. In this study, we synthesised a retrievable Fe-doped WO<sub>3</sub>/SiO<sub>2</sub> heterostructure using a surfactant-assisted hydrothermal method. This heterostructure was then employed as an effective photocatalyst for the removal of Cr(VI) under visible light irradiation. Enlarged photocatalytic reduction was observed over a synergetic 7.5 mol% Fe-doped WO<sub>3</sub>/SiO<sub>2</sub>-20 nanocomposite, resulting in dramatically increased activity compared with undoped WO<sub>3</sub> and SiO<sub>2</sub> nanomaterials under visible light illumination within 90 min. The presence of 7.5 mol% Fe<sup>3+</sup> ion dopant in WO<sub>3</sub> optimised electron-hole recombination, consequently reducing WO<sub>3</sub> photocorrosion. After adding SiO<sub>2</sub> nanoparticles, the binary WO<sub>3</sub>-SiO<sub>2</sub> nanocomposite played roles as both adsorbent and photocatalyst to increase specific surface area. Thus, the 7.5 mol% Fe-doped WO<sub>3</sub>/SiO<sub>2</sub>-20 nanocomposite catalyst had more active sites on the surface of catalyst, and enhanced photocatalytic reduction was significantly achieved. The results showed 91.1% photocatalytic reduction over the optimum photocatalyst, with a photoreduction kinetic rate of 21.1 × 10<sup>-3</sup> min<sup>-1</sup>, which was approximately four times faster than pristine WO<sub>3</sub>. Therefore, the superior optimal photocatalyst demonstrated reusability, with activities decreasing by only 9.8% after five cycles. The high photocatalytic performance and excellent stability of our photocatalyst indicate great potential for water pollution treatments.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"22"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10831000/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover nano","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s11671-023-03919-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The enhancement of the photocatalytic performance of pristine WO3 was systematically adjusted due to its fast recombination rate and low reduction potential. A designed heterostructure photocatalyst was necessarily synthesised by Fe3+ metal ions doping into WO3 structure with and composition modification. In this study, we synthesised a retrievable Fe-doped WO3/SiO2 heterostructure using a surfactant-assisted hydrothermal method. This heterostructure was then employed as an effective photocatalyst for the removal of Cr(VI) under visible light irradiation. Enlarged photocatalytic reduction was observed over a synergetic 7.5 mol% Fe-doped WO3/SiO2-20 nanocomposite, resulting in dramatically increased activity compared with undoped WO3 and SiO2 nanomaterials under visible light illumination within 90 min. The presence of 7.5 mol% Fe3+ ion dopant in WO3 optimised electron-hole recombination, consequently reducing WO3 photocorrosion. After adding SiO2 nanoparticles, the binary WO3-SiO2 nanocomposite played roles as both adsorbent and photocatalyst to increase specific surface area. Thus, the 7.5 mol% Fe-doped WO3/SiO2-20 nanocomposite catalyst had more active sites on the surface of catalyst, and enhanced photocatalytic reduction was significantly achieved. The results showed 91.1% photocatalytic reduction over the optimum photocatalyst, with a photoreduction kinetic rate of 21.1 × 10-3 min-1, which was approximately four times faster than pristine WO3. Therefore, the superior optimal photocatalyst demonstrated reusability, with activities decreasing by only 9.8% after five cycles. The high photocatalytic performance and excellent stability of our photocatalyst indicate great potential for water pollution treatments.

利用可回收的掺铁 WO3/SiO2 异质结构实现高性能光催化还原 Cr(VI)。
由于原始 WO3 的重组速率快、还原电位低,因此需要系统地调整其光催化性能。通过在 WO3 结构中掺入 Fe3+ 金属离子并对其成分进行改性,必然会合成出一种设计好的异质结构光催化剂。在本研究中,我们采用表面活性剂辅助水热法合成了一种可回收的掺杂 Fe 的 WO3/SiO2 异质结构。然后将这种异质结构用作一种有效的光催化剂,在可见光照射下去除六价铬。与未掺杂的 WO3 和 SiO2 纳米材料相比,掺杂 7.5 mol% Fe 的 WO3/SiO2-20 纳米复合材料在可见光照射下 90 分钟内的光催化还原能力显著提高。WO3 中 7.5 mol% 的 Fe3+ 离子掺杂物优化了电子-空穴重组,从而减少了 WO3 的光腐蚀。加入 SiO2 纳米粒子后,二元 WO3-SiO2 纳米复合材料同时发挥了吸附剂和光催化剂的作用,增加了比表面积。因此,掺杂了 7.5 mol% Fe 的 WO3/SiO2-20 纳米复合材料催化剂表面具有更多的活性位点,光催化还原能力显著增强。结果表明,最佳光催化剂的光催化还原率为 91.1%,光还原动力学速率为 21.1 × 10-3 min-1,比原始 WO3 快约四倍。因此,优选的最佳光催化剂具有可重复使用性,五个周期后活性仅下降 9.8%。我们的光催化剂具有很高的光催化性能和出色的稳定性,这表明它在水污染处理方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信