NRAS Mutant Dictates AHCYL1-Governed ER Calcium Homeostasis for Melanoma Tumor Growth.

IF 4.1 2区 医学 Q2 CELL BIOLOGY
Chufan Cai, Jiayi Tu, Jeronimo Najarro, Rukang Zhang, Hao Fan, Freya Q Zhang, Jiacheng Li, Zhicheng Xie, Rui Su, Lei Dong, Nicole Arellano, Michele Ciboddo, Shannon E Elf, Xue Gao, Jing Chen, Rong Wu
{"title":"NRAS Mutant Dictates AHCYL1-Governed ER Calcium Homeostasis for Melanoma Tumor Growth.","authors":"Chufan Cai, Jiayi Tu, Jeronimo Najarro, Rukang Zhang, Hao Fan, Freya Q Zhang, Jiacheng Li, Zhicheng Xie, Rui Su, Lei Dong, Nicole Arellano, Michele Ciboddo, Shannon E Elf, Xue Gao, Jing Chen, Rong Wu","doi":"10.1158/1541-7786.MCR-23-0445","DOIUrl":null,"url":null,"abstract":"<p><p>Calcium homeostasis is critical for cell proliferation, and emerging evidence shows that cancer cells exhibit altered calcium signals to fulfill their need for proliferation. However, it remains unclear whether there are oncogene-specific calcium homeostasis regulations that can expose novel therapeutic targets. Here, from RNAi screen, we report that adenosylhomocysteinase like protein 1 (AHCYL1), a suppressor of the endoplasmic reticulum (ER) calcium channel protein inositol trisphosphate receptor (IP3R), is selectively upregulated and critical for cell proliferation and tumor growth potential of human NRAS-mutated melanoma, but not for melanoma expressing BRAF V600E. Mechanistically, AHCYL1 deficiency results in decreased ER calcium levels, activates the unfolded protein response (UPR), and triggers downstream apoptosis. In addition, we show that AHCYL1 transcription is regulated by activating transcription factor 2 (ATF2) in NRAS-mutated melanoma. Our work provides evidence for oncogene-specific calcium regulations and suggests AHCYL1 as a novel therapeutic target for RAS mutant-expressing human cancers, including melanoma.</p><p><strong>Implications: </strong>Our findings suggest that targeting the AHCYL1-IP3R axis presents a novel therapeutic approach for NRAS-mutated melanomas, with potential applicability to all cancers harboring RAS mutations, such as KRAS-mutated human colorectal cancers.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"386-401"},"PeriodicalIF":4.1000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987265/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-23-0445","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Calcium homeostasis is critical for cell proliferation, and emerging evidence shows that cancer cells exhibit altered calcium signals to fulfill their need for proliferation. However, it remains unclear whether there are oncogene-specific calcium homeostasis regulations that can expose novel therapeutic targets. Here, from RNAi screen, we report that adenosylhomocysteinase like protein 1 (AHCYL1), a suppressor of the endoplasmic reticulum (ER) calcium channel protein inositol trisphosphate receptor (IP3R), is selectively upregulated and critical for cell proliferation and tumor growth potential of human NRAS-mutated melanoma, but not for melanoma expressing BRAF V600E. Mechanistically, AHCYL1 deficiency results in decreased ER calcium levels, activates the unfolded protein response (UPR), and triggers downstream apoptosis. In addition, we show that AHCYL1 transcription is regulated by activating transcription factor 2 (ATF2) in NRAS-mutated melanoma. Our work provides evidence for oncogene-specific calcium regulations and suggests AHCYL1 as a novel therapeutic target for RAS mutant-expressing human cancers, including melanoma.

Implications: Our findings suggest that targeting the AHCYL1-IP3R axis presents a novel therapeutic approach for NRAS-mutated melanomas, with potential applicability to all cancers harboring RAS mutations, such as KRAS-mutated human colorectal cancers.

NRAS 突变体决定了黑色素瘤肿瘤生长所需的 AHCYL1 控制的 ER 钙平衡。
钙平衡对细胞增殖至关重要,而新的证据显示,癌细胞会表现出钙信号的改变,以满足其增殖的需要。然而,目前仍不清楚是否存在癌基因特异性钙稳态调控,从而揭示出新的治疗靶点。在这里,我们通过RNAi筛选发现,腺苷高胱氨酸酶样蛋白1(AHCYL1)是内质网(ER)钙通道蛋白三磷酸肌醇受体(IP3R)的抑制因子,它选择性上调,对人类NRAS突变黑色素瘤的细胞增殖和肿瘤生长潜力至关重要,但对表达BRAF V600E的黑色素瘤则没有影响。从机理上讲,AHCYL1 缺乏会导致ER钙水平下降,激活未折叠蛋白反应(UPR),并引发下游细胞凋亡。此外,我们还发现,在 NRAS 基因突变的黑色素瘤中,AHCYL1 的转录受激活转录因子 2 (ATF2) 的调控。我们的研究为癌基因特异性钙调控提供了证据,并建议将 AHCYL1 作为包括黑色素瘤在内的 RAS 突变表达人类癌症的新型治疗靶点。意义:我们的研究结果表明,以 AHCYL1-IP3R 轴为靶点是治疗 NRAS 突变黑色素瘤的一种新方法,可能适用于所有携带 RAS 突变的癌症,如 KRAS 突变的人类结直肠癌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Cancer Research
Molecular Cancer Research 医学-细胞生物学
CiteScore
9.90
自引率
0.00%
发文量
280
审稿时长
4-8 weeks
期刊介绍: Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信