Mansur Cici, Sayra Dilmac, Gunes Aytac, Gamze Tanriover
{"title":"Cerebral cavernous malformation proteins, CCM1, CCM2 and CCM3, are decreased in metastatic lesions in a murine breast carcinoma model.","authors":"Mansur Cici, Sayra Dilmac, Gunes Aytac, Gamze Tanriover","doi":"10.1080/10520295.2024.2305114","DOIUrl":null,"url":null,"abstract":"<p><p>Three genes are associated with cerebral cavernous malformations (CCMs): <i>CCM1, CCM2</i> and <i>CCM3</i>. These genes participate in microvascular angiogenesis, cell-to-cell junctions, migration and apoptosis. We evaluated the expression in vivo of CCM genes in primary tumors and metastastases in a murine model of metastatic breast carcinoma. We used cell lines obtained from metastasis of 4T1, 4TLM and 4THM breast cancer to liver and heart. These cells were injected into the mammary ridge of Balb/C female mice. After 27 days, the primary tumors, liver and lung were removed and CCM proteins were assessed using immunohistochemistry and western blot analysis. CCM proteins were expressed in primary tumor tissues of all tumor-injected animals; however, no CCM protein was expressed in metastatic tumor cells that migrated into other tissues. CCM proteins still were observed in the lung and liver tissue cells. Our findings suggest that CCM proteins are present during primary tumor formation, but when these cells develop metastatic potential, they lose CCM protein expression. CCM protein expression was lost or reduced in metastatic tissues compared to the primary tumor, which indicates that CCM proteins might participate in tumorigenesis and metastasis.</p>","PeriodicalId":8970,"journal":{"name":"Biotechnic & Histochemistry","volume":" ","pages":"76-83"},"PeriodicalIF":1.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnic & Histochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10520295.2024.2305114","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Three genes are associated with cerebral cavernous malformations (CCMs): CCM1, CCM2 and CCM3. These genes participate in microvascular angiogenesis, cell-to-cell junctions, migration and apoptosis. We evaluated the expression in vivo of CCM genes in primary tumors and metastastases in a murine model of metastatic breast carcinoma. We used cell lines obtained from metastasis of 4T1, 4TLM and 4THM breast cancer to liver and heart. These cells were injected into the mammary ridge of Balb/C female mice. After 27 days, the primary tumors, liver and lung were removed and CCM proteins were assessed using immunohistochemistry and western blot analysis. CCM proteins were expressed in primary tumor tissues of all tumor-injected animals; however, no CCM protein was expressed in metastatic tumor cells that migrated into other tissues. CCM proteins still were observed in the lung and liver tissue cells. Our findings suggest that CCM proteins are present during primary tumor formation, but when these cells develop metastatic potential, they lose CCM protein expression. CCM protein expression was lost or reduced in metastatic tissues compared to the primary tumor, which indicates that CCM proteins might participate in tumorigenesis and metastasis.
期刊介绍:
Biotechnic & Histochemistry (formerly Stain technology) is the
official publication of the Biological Stain Commission. The journal has been in continuous publication since 1926.
Biotechnic & Histochemistry is an interdisciplinary journal that embraces all aspects of techniques for visualizing biological processes and entities in cells, tissues and organisms; papers that describe experimental work that employs such investigative methods are appropriate for publication as well.
Papers concerning topics as diverse as applications of histochemistry, immunohistochemistry, in situ hybridization, cytochemical probes, autoradiography, light and electron microscopy, tissue culture, in vivo and in vitro studies, image analysis, cytogenetics, automation or computerization of investigative procedures and other investigative approaches are appropriate for publication regardless of their length. Letters to the Editor and review articles concerning topics of special and current interest also are welcome.