{"title":"The Kornblum DeLaMare rearrangement in natural product synthesis: 25 years of innovation","authors":"Marc C. Kimber , Darren S. Lee","doi":"10.1039/d3np00058c","DOIUrl":null,"url":null,"abstract":"<div><p>Covering: 1998 up to the end of 2023</p></div><div><p>Since its initial disclosure in 1951, the Kornblum DeLaMare rearrangement has proved an important synthetic transformation and has been widely adopted as a biomimetic step in natural product synthesis. Utilising the base catalysed decomposition of alkyl peroxides to yield a ketone and alcohol has found use in many syntheses as well as a key strategic step, including the unmasking of furans, as a biomimetic synthetic tool, and the use of the rearrangement to install oxygen enantioselectively. Since <em>ca.</em> 1998, its impact as a synthetic transformation has grown significantly, especially given the frequency of use in natural product syntheses, therefore this 25 year time period will be the focus of the review.</p></div>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0265056824000308","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Covering: 1998 up to the end of 2023
Since its initial disclosure in 1951, the Kornblum DeLaMare rearrangement has proved an important synthetic transformation and has been widely adopted as a biomimetic step in natural product synthesis. Utilising the base catalysed decomposition of alkyl peroxides to yield a ketone and alcohol has found use in many syntheses as well as a key strategic step, including the unmasking of furans, as a biomimetic synthetic tool, and the use of the rearrangement to install oxygen enantioselectively. Since ca. 1998, its impact as a synthetic transformation has grown significantly, especially given the frequency of use in natural product syntheses, therefore this 25 year time period will be the focus of the review.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.