Magnetic Skyrmions above Room Temperature in a van der Waals Ferromagnet Fe3GaTe2

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chen Liu, Senfu Zhang, Hongyuan Hao, Hanin Algaidi, Yinchang Ma, Xi-Xiang Zhang
{"title":"Magnetic Skyrmions above Room Temperature in a van der Waals Ferromagnet Fe3GaTe2","authors":"Chen Liu,&nbsp;Senfu Zhang,&nbsp;Hongyuan Hao,&nbsp;Hanin Algaidi,&nbsp;Yinchang Ma,&nbsp;Xi-Xiang Zhang","doi":"10.1002/adma.202311022","DOIUrl":null,"url":null,"abstract":"<p>2D van der Waals (vdW) ferromagnetic crystals are a promising platform for innovative spintronic devices based on magnetic skyrmions, thanks to their high flexibility and atomic thickness stability. However, room-temperature skyrmion-hosting vdW materials are scarce, which poses a challenge for practical applications. In this study, a chemical vapor transport (CVT) approach is employed to synthesize Fe<sub>3</sub>GaTe<sub>2</sub> crystals and room-temperature Néel skyrmions are observed in Fe<sub>3</sub>GaTe<sub>2</sub> nanoflakes above 58 nm in thickness through in situ Lorentz transmission electron microscopy (L-TEM). Upon an optimized field cooling procedure, zero-field hexagonal skyrmion lattices are successfully generated in nanoflakes with an extended thickness range (30–180 nm). Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted. The research establishes Fe<sub>3</sub>GaTe<sub>2</sub> as an emerging above-room-temperature skyrmion-hosting vdW material, holding great promise for future spintronics.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 18","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202311022","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

2D van der Waals (vdW) ferromagnetic crystals are a promising platform for innovative spintronic devices based on magnetic skyrmions, thanks to their high flexibility and atomic thickness stability. However, room-temperature skyrmion-hosting vdW materials are scarce, which poses a challenge for practical applications. In this study, a chemical vapor transport (CVT) approach is employed to synthesize Fe3GaTe2 crystals and room-temperature Néel skyrmions are observed in Fe3GaTe2 nanoflakes above 58 nm in thickness through in situ Lorentz transmission electron microscopy (L-TEM). Upon an optimized field cooling procedure, zero-field hexagonal skyrmion lattices are successfully generated in nanoflakes with an extended thickness range (30–180 nm). Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted. The research establishes Fe3GaTe2 as an emerging above-room-temperature skyrmion-hosting vdW material, holding great promise for future spintronics.

范德瓦尔斯铁磁体 Fe3 GaTe2 中室温以上的磁天目。
二维(2D)范德华(vdW)铁磁晶体具有高柔性和原子厚度稳定性,是基于磁性天融子的创新型自旋电子器件的理想平台。然而,室温天磁子容纳 vdW 材料非常稀缺,这给实际应用带来了挑战。在这项研究中,我们采用化学气相传输(CVT)方法合成了 Fe3 GaTe2 晶体,并通过原位洛伦兹透射电子显微镜(L-TEM)观察到厚度超过 58 nm 的 Fe3 GaTe2 纳米片中的室温奈尔天幕。通过优化场冷却程序,在厚度范围更广(30-180 nm)的纳米片中成功生成了零场六边形天电离子晶格。值得注意的是,这些天融子晶格在高达 355 K 的温度下仍然保持稳定,创下了天融子寄存最高温度的新纪录。我们的研究确立了 Fe3 GaTe2 作为一种新兴的高于室温的天电离子寄存 vdW 材料的地位,为未来的自旋电子学带来了巨大希望。本文受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信