Nucleophilic amino acids as a renewable alternative to petrochemically-derived amines in glycerol epoxy resins

IF 20.2 Q1 MATERIALS SCIENCE, PAPER & WOOD
Yunyi Liang , Yonghong Luo , Yingji Wu , Xiaona Li , Quyet Van Le , Jianzhang Li , Changlei Xia
{"title":"Nucleophilic amino acids as a renewable alternative to petrochemically-derived amines in glycerol epoxy resins","authors":"Yunyi Liang ,&nbsp;Yonghong Luo ,&nbsp;Yingji Wu ,&nbsp;Xiaona Li ,&nbsp;Quyet Van Le ,&nbsp;Jianzhang Li ,&nbsp;Changlei Xia","doi":"10.1016/j.jobab.2024.01.003","DOIUrl":null,"url":null,"abstract":"<div><p>The standard epoxy resin curing agents revealed are from unsustainable petroleum-based sources, which produce poisonous exhaust when cured. Amino acids, a bio-based epoxy curing agent with amino and carboxyl groups, are another potential curing agent. Water-soluble epoxy resins cured with lysine (Lys), glutamic acid (Glu), leucine (Leu), and serine (Ser) as amino acids were investigated. The results showed that the water-soluble epoxy resin (glycerol epoxy resins, GER) was cured with Lys and Glu after reacting. Fourier transform infrared (FT-IR) spectroscopic analysis of the GER-Lys showed that the amino and carboxyl groups of Lys primarily reacted with the epoxy groups of GER. The elongation at break of Lys-cured GER (GER-Lys) cured at 70 ℃ with a molar ratio of 1꞉0.75 was 75.32%. The fact that elongations at break of GER-Lys (79.43%) were higher than those of GER-Glu (17.33%), respectively supports the decrease of crosslinking density by the amino acid-cured GER reaction. The potential of Lys and Glu alternatives for petrochemical amines is demonstrated and provides promising opportunities for industrial application.</p></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":null,"pages":null},"PeriodicalIF":20.2000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2369969824000148/pdfft?md5=27db72844385b0d2bb4b195e20552d24&pid=1-s2.0-S2369969824000148-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioresources and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2369969824000148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

The standard epoxy resin curing agents revealed are from unsustainable petroleum-based sources, which produce poisonous exhaust when cured. Amino acids, a bio-based epoxy curing agent with amino and carboxyl groups, are another potential curing agent. Water-soluble epoxy resins cured with lysine (Lys), glutamic acid (Glu), leucine (Leu), and serine (Ser) as amino acids were investigated. The results showed that the water-soluble epoxy resin (glycerol epoxy resins, GER) was cured with Lys and Glu after reacting. Fourier transform infrared (FT-IR) spectroscopic analysis of the GER-Lys showed that the amino and carboxyl groups of Lys primarily reacted with the epoxy groups of GER. The elongation at break of Lys-cured GER (GER-Lys) cured at 70 ℃ with a molar ratio of 1꞉0.75 was 75.32%. The fact that elongations at break of GER-Lys (79.43%) were higher than those of GER-Glu (17.33%), respectively supports the decrease of crosslinking density by the amino acid-cured GER reaction. The potential of Lys and Glu alternatives for petrochemical amines is demonstrated and provides promising opportunities for industrial application.

亲核氨基酸作为甘油环氧树脂中石油化学衍生胺的可再生替代品
所揭示的标准环氧树脂固化剂来自不可持续的石油来源,固化时会产生有毒废气。氨基酸是一种生物基环氧固化剂,带有氨基和羧基,是另一种潜在的固化剂。研究人员对用赖氨酸(Lys)、谷氨酸(Glu)、亮氨酸(Leu)和丝氨酸(Ser)作为氨基酸固化的水溶性环氧树脂进行了调查。结果表明,水溶性环氧树脂(甘油环氧树脂,GER)与赖氨酸和谷氨酸反应后固化。GER-Lys 的傅立叶变换红外光谱分析显示,Lys 的氨基和羧基主要与 GER 的环氧基团发生反应。摩尔比为 1꞉0.75 的 Lys 固化 GER(GER-Lys)在 70 ℃ 固化时的断裂伸长率为 75.32%。GER-Lys 的断裂伸长率(79.43%)分别高于 GER-Glu 的断裂伸长率(17.33%),这一事实证明氨基酸固化 GER 反应降低了交联密度。这证明了 Lys 和 Glu 作为石化胺替代品的潜力,并为工业应用提供了广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bioresources and Bioproducts
Journal of Bioresources and Bioproducts Agricultural and Biological Sciences-Forestry
CiteScore
39.30
自引率
0.00%
发文量
38
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信