Lei Jin , Ziyang Yu , Aaron Au , Peter Serles , Nan Wang , Jeremy T. Lant , Tobin Filleter , Christopher M. Yip
{"title":"P-TDHM: Open-source portable telecentric digital holographic microscope","authors":"Lei Jin , Ziyang Yu , Aaron Au , Peter Serles , Nan Wang , Jeremy T. Lant , Tobin Filleter , Christopher M. Yip","doi":"10.1016/j.ohx.2024.e00508","DOIUrl":null,"url":null,"abstract":"<div><p>We present the design of a low-cost, portable telecentric digital holographic microscope (P-TDHM) that utilizes off-the-shelf components. We describe the system’s hardware and software elements and evaluate its performance by imaging samples ranging from nano-printed targets to live HeLa cells, HEK293 cells, and <em>Dolichospermum</em> via both in-line and off-axis modes. Our results demonstrate that the system can acquire high quality quantitative phase images with nanometer axial and sub-micron lateral resolution in a small form factor, making it a promising candidate for resource-limited settings and remote locations. Our design represents a significant step forward in making telecentric digital holographic microscopy accessible and affordable to the broader community.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"17 ","pages":"Article e00508"},"PeriodicalIF":2.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000026/pdfft?md5=257c9a865241af30ec7d46f32aa96c85&pid=1-s2.0-S2468067224000026-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We present the design of a low-cost, portable telecentric digital holographic microscope (P-TDHM) that utilizes off-the-shelf components. We describe the system’s hardware and software elements and evaluate its performance by imaging samples ranging from nano-printed targets to live HeLa cells, HEK293 cells, and Dolichospermum via both in-line and off-axis modes. Our results demonstrate that the system can acquire high quality quantitative phase images with nanometer axial and sub-micron lateral resolution in a small form factor, making it a promising candidate for resource-limited settings and remote locations. Our design represents a significant step forward in making telecentric digital holographic microscopy accessible and affordable to the broader community.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.