{"title":"Does the minimization of the average vehicle delay and the minimization of the average number of stops mean the same at the signalized intersections?","authors":"Ziya Cakici , Goker Aksoy","doi":"10.1016/j.ijtst.2024.01.003","DOIUrl":null,"url":null,"abstract":"<div><p>Signal timings at signalized intersections are frequently optimized by considering commonly used vehicle delay models. It is generally believed that reducing the average number of stops can also decrease the average vehicle delay. Therefore, the aim of this research is to address the question: “Can similar performance outcomes be achieved through the <strong>M</strong>inimization of <strong>A</strong>verage <strong>V</strong>ehicle <strong>D</strong>elay (MAVD) and the <strong>M</strong>inimization of <strong>A</strong>verage <strong>N</strong>umber of <strong>S</strong>tops (MANS)?” The first phase of the study entails the creation of two distinct signal timing optimization models based on the Akcelik average vehicle delay and average number of stops models. Subsequently, scripts were developed in MATLAB to identify the optimal signal timings for both approaches utilizing the Differential Evolution Algorithm. In the third phase, 30 traffic scenarios were generated, each varying in overall traffic volumes at the intersection. Subsequently, the signal timings derived from the MAVD and MANS approaches were applied independently to these scenarios, and performance indicators (average vehicle delay and average number of stops) were compared. The results reveal that the utilization of MANS-based signal timings instead of MAVD may lead to an increase in average vehicle delays of up to 113.55%. Additionally, it is demonstrated that when MAVD-based signal timings are applied instead of MANS, the average number of stops can increase by up to 16.28%. Finally, it is concluded that as the overall traffic volume at the intersection increases, these growth rates tend to decrease.</p></div>","PeriodicalId":52282,"journal":{"name":"International Journal of Transportation Science and Technology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2046043024000030/pdfft?md5=64c25295d7b501eb3cdc34cff0283cd8&pid=1-s2.0-S2046043024000030-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Transportation Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2046043024000030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Signal timings at signalized intersections are frequently optimized by considering commonly used vehicle delay models. It is generally believed that reducing the average number of stops can also decrease the average vehicle delay. Therefore, the aim of this research is to address the question: “Can similar performance outcomes be achieved through the Minimization of Average Vehicle Delay (MAVD) and the Minimization of Average Number of Stops (MANS)?” The first phase of the study entails the creation of two distinct signal timing optimization models based on the Akcelik average vehicle delay and average number of stops models. Subsequently, scripts were developed in MATLAB to identify the optimal signal timings for both approaches utilizing the Differential Evolution Algorithm. In the third phase, 30 traffic scenarios were generated, each varying in overall traffic volumes at the intersection. Subsequently, the signal timings derived from the MAVD and MANS approaches were applied independently to these scenarios, and performance indicators (average vehicle delay and average number of stops) were compared. The results reveal that the utilization of MANS-based signal timings instead of MAVD may lead to an increase in average vehicle delays of up to 113.55%. Additionally, it is demonstrated that when MAVD-based signal timings are applied instead of MANS, the average number of stops can increase by up to 16.28%. Finally, it is concluded that as the overall traffic volume at the intersection increases, these growth rates tend to decrease.