{"title":"Enhanced photocatalytic degradation of dyes using a novel waste toner-based TiO2/Fe2O3@nanographite nanohybrid: A sustainable approach","authors":"Kenneth Mensah , Hassan Shokry , Marwa Elkady , Hamada B. Hawash , Mahmoud Samy","doi":"10.1016/j.wse.2024.01.005","DOIUrl":null,"url":null,"abstract":"<div><p>This study synthesized a ferric oxide–nanographite (NG) nanocomposite (Fe<sub>2</sub>O<sub>3</sub>@NG) from waste toner powder through carbonization. Subsequently, a TiO<sub>2</sub>/Fe<sub>2</sub>O<sub>3</sub>@NG nanohybrid was fabricated using the sol–gel technique to improve the photocatalytic degradation of dyes. TiO<sub>2</sub>/Fe<sub>2</sub>O<sub>3</sub>@NG nanocomposites were prepared at TiO<sub>2</sub>:Fe<sub>2</sub>O<sub>3</sub>@NG ratios of 2:1 (Ti:T-21), 1:1 (Ti:T-11), and 1:2 (Ti:T-12). The porosity, morphology, surface chemistry, and chemical interactions between TiO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>, and graphite in the prepared TiO<sub>2</sub>/Fe<sub>2</sub>O<sub>3</sub>@NG nanocomposites were characterized using the Brunauer–Emmett–Teller (BET) method and microscopic and spectroscopic analyses. The TiO<sub>2</sub>/Fe<sub>2</sub>O<sub>3</sub>@NG nanohybrid exhibited a reduced bandgap (2.4–2.9 eV) and enhanced charge carrier separation through charge transfer at the junction of the hetero-structured TiO<sub>2</sub>/Fe<sub>2</sub>O<sub>3</sub>@NG nanohybrid. Preliminary experiments revealed that Ti:T-21 was the most effective photocatalyst for degrading acid blue-25 (AB-25) compared to Ti:T-11, Ti:T-12, sole TiO<sub>2</sub>, and Fe<sub>2</sub>O<sub>3</sub>@NG. This study also investigated the impacts of catalyst dose and initial dye concentration on the AB-25 photocatalytic degradation. Notably, 97% of 5-mg/L AB-25 was removed using 1.25-g/L Ti:T-21 at an unmodified pH of 6.4 within 120 min. Furthermore, Ti:T-21 exhibited remarkable recyclability in its immobilized form, achieving degradation ratios of 74.7%–71.8% over five consecutive runs, compared to removal efficiencies of 85.0%–62.3% in the suspended mode. Trapping experiments identified hydroxyl radicals, holes, and superoxide as the principal reactive radicals. The TiO<sub>2</sub>/Fe<sub>2</sub>O<sub>3</sub>@NG/light system was effective in disintegrating and mineralizing other synthetic dyes such as Congo red, methylene blue, and methyl red, indicating its potential for industrial-scale degradation of authentic dye wastewater. The utilization of waste toner for water treatment is highlighted as a strategy to promote environmental sustainability, foster a circular economy, and contribute to pollution remediation.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 3","pages":"Pages 226-235"},"PeriodicalIF":3.7000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S167423702400022X/pdfft?md5=6da1285a340aaf78de5285f0302f3620&pid=1-s2.0-S167423702400022X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S167423702400022X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study synthesized a ferric oxide–nanographite (NG) nanocomposite (Fe2O3@NG) from waste toner powder through carbonization. Subsequently, a TiO2/Fe2O3@NG nanohybrid was fabricated using the sol–gel technique to improve the photocatalytic degradation of dyes. TiO2/Fe2O3@NG nanocomposites were prepared at TiO2:Fe2O3@NG ratios of 2:1 (Ti:T-21), 1:1 (Ti:T-11), and 1:2 (Ti:T-12). The porosity, morphology, surface chemistry, and chemical interactions between TiO2, Fe2O3, and graphite in the prepared TiO2/Fe2O3@NG nanocomposites were characterized using the Brunauer–Emmett–Teller (BET) method and microscopic and spectroscopic analyses. The TiO2/Fe2O3@NG nanohybrid exhibited a reduced bandgap (2.4–2.9 eV) and enhanced charge carrier separation through charge transfer at the junction of the hetero-structured TiO2/Fe2O3@NG nanohybrid. Preliminary experiments revealed that Ti:T-21 was the most effective photocatalyst for degrading acid blue-25 (AB-25) compared to Ti:T-11, Ti:T-12, sole TiO2, and Fe2O3@NG. This study also investigated the impacts of catalyst dose and initial dye concentration on the AB-25 photocatalytic degradation. Notably, 97% of 5-mg/L AB-25 was removed using 1.25-g/L Ti:T-21 at an unmodified pH of 6.4 within 120 min. Furthermore, Ti:T-21 exhibited remarkable recyclability in its immobilized form, achieving degradation ratios of 74.7%–71.8% over five consecutive runs, compared to removal efficiencies of 85.0%–62.3% in the suspended mode. Trapping experiments identified hydroxyl radicals, holes, and superoxide as the principal reactive radicals. The TiO2/Fe2O3@NG/light system was effective in disintegrating and mineralizing other synthetic dyes such as Congo red, methylene blue, and methyl red, indicating its potential for industrial-scale degradation of authentic dye wastewater. The utilization of waste toner for water treatment is highlighted as a strategy to promote environmental sustainability, foster a circular economy, and contribute to pollution remediation.
期刊介绍:
Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.