Climate Change and Volatility Forecasting: Novel Insights from Sectoral Indices

Usman Ghani , Bo Zhu , Feng Ma , Maria Ghani
{"title":"Climate Change and Volatility Forecasting: Novel Insights from Sectoral Indices","authors":"Usman Ghani ,&nbsp;Bo Zhu ,&nbsp;Feng Ma ,&nbsp;Maria Ghani","doi":"10.1016/j.jclimf.2024.100034","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the impact of climate policy uncertainty (CPU) on sectoral indices and clean energy exchange-traded funds (ETFs) by using a GARCH-MIDAS model. The stock indices include renewable energy (NEX), transportation, mining, industrial, real estate, green economy US, green economy Europe, green economy Asia index, and ETFs clean energy (PBW), global clean energy (PBD). The research also evaluates the forecasting power of uncertainty factors, including equity market volatility (EMV), economy policy uncertainty (EPU), trade policy uncertainty (TPU), fiscal policy uncertainty (FPU), global economy policy uncertainty (GEPU), and geopolitical risk (GPR), to predict the volatility. We obtained some notable results. First, the out-of-sample findings show that CPU index information is useful to predict the volatility of the NEX renewable energy, green economy US, transportation, energy index for the US, and clean energy (PBW), global clean energy (PBD) ETFs. Second, EMV, EPU, and GPR also contain valuable information for the real estate, industrial, energy, and NEX renewable energy index. Additionally, we find evidence during low and high volatility and upheaval of the COVID-19 pandemic. The <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>oos</mi></mrow><mrow><mn>2</mn><mspace></mspace></mrow></msubsup></math></span> square and model confidence set (MCS) tests verify each model's out-of-sample forecasting performance.</p></div>","PeriodicalId":100763,"journal":{"name":"Journal of Climate Finance","volume":"6 ","pages":"Article 100034"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294972802400004X/pdfft?md5=ad5d08d625c692e3dfd075e3379c6055&pid=1-s2.0-S294972802400004X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate Finance","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294972802400004X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the impact of climate policy uncertainty (CPU) on sectoral indices and clean energy exchange-traded funds (ETFs) by using a GARCH-MIDAS model. The stock indices include renewable energy (NEX), transportation, mining, industrial, real estate, green economy US, green economy Europe, green economy Asia index, and ETFs clean energy (PBW), global clean energy (PBD). The research also evaluates the forecasting power of uncertainty factors, including equity market volatility (EMV), economy policy uncertainty (EPU), trade policy uncertainty (TPU), fiscal policy uncertainty (FPU), global economy policy uncertainty (GEPU), and geopolitical risk (GPR), to predict the volatility. We obtained some notable results. First, the out-of-sample findings show that CPU index information is useful to predict the volatility of the NEX renewable energy, green economy US, transportation, energy index for the US, and clean energy (PBW), global clean energy (PBD) ETFs. Second, EMV, EPU, and GPR also contain valuable information for the real estate, industrial, energy, and NEX renewable energy index. Additionally, we find evidence during low and high volatility and upheaval of the COVID-19 pandemic. The Roos2 square and model confidence set (MCS) tests verify each model's out-of-sample forecasting performance.

气候变化与波动性预测:部门指数的新见解
本研究利用 GARCH-MIDAS 模型研究了气候政策不确定性(CPU)对行业指数和清洁能源交易所交易基金(ETF)的影响。股票指数包括可再生能源(NEX)、交通、采矿、工业、房地产、美国绿色经济、欧洲绿色经济、亚洲绿色经济指数,ETFs 包括清洁能源(PBW)、全球清洁能源(PBD)。研究还评估了股票市场波动率(EMV)、经济政策不确定性(EPU)、贸易政策不确定性(TPU)、财政政策不确定性(FPU)、全球经济政策不确定性(GEPU)和地缘政治风险(GPR)等不确定性因素对波动率的预测能力。我们得到了一些值得注意的结果。首先,样本外研究结果表明,CPU 指数信息有助于预测 NEX 可再生能源、美国绿色经济、交通、美国能源指数以及清洁能源(PBW)、全球清洁能源(PBD)ETF 的波动性。其次,EMV、EPU 和 GPR 也包含房地产、工业、能源和 NEX 可再生能源指数的有价值信息。此外,我们还发现了在 COVID-19 大流行的低波动和高波动及动荡期间的证据。Roos2 平方检验和模型置信集检验验证了每个模型的样本外预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信