Dynamics of one-dimensional maps and Gurtin–Maccamy's population model. Part I. Asymptotically constant solutions

Franco Herrera, S.N. Trofimchuk
{"title":"Dynamics of one-dimensional maps and Gurtin–Maccamy's population model. Part I. Asymptotically constant solutions","authors":"Franco Herrera, S.N. Trofimchuk","doi":"10.3842/umzh.v75i12.7678","DOIUrl":null,"url":null,"abstract":"UDC 517.9\nMotivated by the recent work by  Ma and Magal [Proc. Amer. Math. Soc. (2021); https://doi.org/10.1090/proc/15629] on  the global stability property of  the Gurtin–MacCamy's population model, we consider a family of scalar nonlinear convolution equations with unimodal nonlinearities.  In particular, we  relate the Ivanov and Sharkovsky analysis  of singularly perturbed delay differential equations in [https://doi.org/10.1007/978-3-642-61243-5_5] with the asymptotic behavior of solutions of the  Gurtin–MacCamy's system. According the classification proposed in  [https://doi.org/10.1007/978-3-642-61243-5_5], we can distinguish three fundamental  kinds of continuous solutions of our equations, namely, solutions of the asymptotically constant type, relaxation type  and turbulent type. We present various conditions assuring that all solutions belong to the first of these three classes. In the setting of unimodal convolution  equations, these conditions suggest a generalized version of the famous Wright's conjecture.","PeriodicalId":163365,"journal":{"name":"Ukrains’kyi Matematychnyi Zhurnal","volume":"30 33","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrains’kyi Matematychnyi Zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/umzh.v75i12.7678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

UDC 517.9 Motivated by the recent work by  Ma and Magal [Proc. Amer. Math. Soc. (2021); https://doi.org/10.1090/proc/15629] on  the global stability property of  the Gurtin–MacCamy's population model, we consider a family of scalar nonlinear convolution equations with unimodal nonlinearities.  In particular, we  relate the Ivanov and Sharkovsky analysis  of singularly perturbed delay differential equations in [https://doi.org/10.1007/978-3-642-61243-5_5] with the asymptotic behavior of solutions of the  Gurtin–MacCamy's system. According the classification proposed in  [https://doi.org/10.1007/978-3-642-61243-5_5], we can distinguish three fundamental  kinds of continuous solutions of our equations, namely, solutions of the asymptotically constant type, relaxation type  and turbulent type. We present various conditions assuring that all solutions belong to the first of these three classes. In the setting of unimodal convolution  equations, these conditions suggest a generalized version of the famous Wright's conjecture.
一维地图动力学和古尔廷-马卡米人口模型。第一部分:渐近恒定解
UDC 517.9受 Ma 和 Magal [Proc. Amer. Math. Soc. (2021); https://doi.org/10.1090/proc/15629] 最近关于 Gurtin-MacCamy 人口模型全局稳定性特性的工作的启发,我们考虑了具有单模态非线性的标量非线性卷积方程族。 特别是,我们将 [https://doi.org/10.1007/978-3-642-61243-5_5] 中对奇异扰动延迟微分方程的 Ivanov 和 Sharkovsky 分析与 Gurtin-MacCamy 系统解的渐近行为联系起来。根据 [https://doi.org/10.1007/978-3-642-61243-5_5] 中提出的分类,我们可以将方程的连续解分为三种基本类型,即渐近恒定型、弛豫型和湍流型解。我们提出了各种条件,确保所有解都属于这三类中的第一类。在单模态卷积方程的背景下,这些条件提出了著名的赖特猜想的广义版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信