{"title":"Performance Evaluation of R1224yd as Alternative to R123 and R245fa for Vapor Compression Heat Pump System","authors":"Nyayu Aisyah, H. M. Ariyadi","doi":"10.5541/ijot.1310329","DOIUrl":null,"url":null,"abstract":"The search for environmentally friendly refrigerants for vapor compression systems has been a significant focus recently due to environmental concerns such as ozone depletion and global warming. In this study, the potential of R1224yd as an alternative refrigerant is investigated. A thermodynamic analysis of a 4-kW air conditioning system is conducted to assess the performance of R1224yd. The system is analyzed from a thermodynamic perspective, and key performance indicators such as the Coefficient of Performance and exergy efficiency. The results are then compared to R245fa and R123. Furthermore, a parametric study is performed to examine the impact of key parameters, such as evaporating and condensing temperatures, on the system's performance. This analysis provides insights into the sensitivity of the system's performance to variations in these parameters. The results indicate that R1224yd is a promising candidate as an environmentally friendly alternative refrigerant compared to R123 and R245fa. Because R1224yd has the lowest environmental impact. It has about 700 kg CO2 indirect emission, but about zero kgCO2 for direct emission. While, based on the thermodynamic results, R1224yd offers better performance compared to R245fa which has 1-3% higher in performance value and exergy efficiency, and has comparable performance to R123. This suggests that R1224yd can be a viable option for the systems, providing improved energy efficiency and lower environmental impact.","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5541/ijot.1310329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The search for environmentally friendly refrigerants for vapor compression systems has been a significant focus recently due to environmental concerns such as ozone depletion and global warming. In this study, the potential of R1224yd as an alternative refrigerant is investigated. A thermodynamic analysis of a 4-kW air conditioning system is conducted to assess the performance of R1224yd. The system is analyzed from a thermodynamic perspective, and key performance indicators such as the Coefficient of Performance and exergy efficiency. The results are then compared to R245fa and R123. Furthermore, a parametric study is performed to examine the impact of key parameters, such as evaporating and condensing temperatures, on the system's performance. This analysis provides insights into the sensitivity of the system's performance to variations in these parameters. The results indicate that R1224yd is a promising candidate as an environmentally friendly alternative refrigerant compared to R123 and R245fa. Because R1224yd has the lowest environmental impact. It has about 700 kg CO2 indirect emission, but about zero kgCO2 for direct emission. While, based on the thermodynamic results, R1224yd offers better performance compared to R245fa which has 1-3% higher in performance value and exergy efficiency, and has comparable performance to R123. This suggests that R1224yd can be a viable option for the systems, providing improved energy efficiency and lower environmental impact.
期刊介绍:
The purpose and scope of the International Journal of Thermodynamics is · to provide a forum for the publication of original theoretical and applied work in the field of thermodynamics as it relates to systems, states, processes, and both non-equilibrium and equilibrium phenomena at all temporal and spatial scales. · to provide a multidisciplinary and international platform for the dissemination to academia and industry of both scientific and engineering contributions, which touch upon a broad class of disciplines that are foundationally linked to thermodynamics and the methods and analyses derived there from. · to assess how both the first and particularly the second laws of thermodynamics touch upon these disciplines. · to highlight innovative & pioneer research in the field of thermodynamics in the following subjects (but not limited to the following, novel research in new areas are strongly suggested): o Entropy in thermodynamics and information theory. o Thermodynamics in process intensification. o Biothermodynamics (topics such as self-organization far from equilibrium etc.) o Thermodynamics of nonadditive systems. o Nonequilibrium thermal complex systems. o Sustainable design and thermodynamics. o Engineering thermodynamics. o Energy.