{"title":"Enhanced corrosion resistance of CoCrMo by laser-based surface modification","authors":"K. Vidyasagar, Dinesh Kalyanasundaram","doi":"10.1177/02670844231214689","DOIUrl":null,"url":null,"abstract":"Biomedical grade cobalt–chromium–molybdenum (CoCrMo) alloys are extensively used for load-bearing biomedical applications such as hip and knee implants due to their exceptional biocompatible and biomechanical properties. However, the strain-induced martensite ε-phase development during contact loading results in thin oxide layers that are prone to fracture leading to corrosion. The formation of thin oxide layers is undesirable for long-term deployment. We employed laser-texturing to enhance the corrosion resistance of the material in simulated body fluid by the formation of hcp ε-phase martensite and via the formation of oxide layers. However, partial formation of hcp ε-phase martensite was observed. By means of central composite design-based response surface methodology, three laser parameters such as average laser power, texture density and the number of passes were optimised for maximal open circuit potential, an indicator for minimal corrosion. The textured surfaces were found to assist in the cellular proliferation of fibroblasts and inhibit bacterial growth.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" 7","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/02670844231214689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Biomedical grade cobalt–chromium–molybdenum (CoCrMo) alloys are extensively used for load-bearing biomedical applications such as hip and knee implants due to their exceptional biocompatible and biomechanical properties. However, the strain-induced martensite ε-phase development during contact loading results in thin oxide layers that are prone to fracture leading to corrosion. The formation of thin oxide layers is undesirable for long-term deployment. We employed laser-texturing to enhance the corrosion resistance of the material in simulated body fluid by the formation of hcp ε-phase martensite and via the formation of oxide layers. However, partial formation of hcp ε-phase martensite was observed. By means of central composite design-based response surface methodology, three laser parameters such as average laser power, texture density and the number of passes were optimised for maximal open circuit potential, an indicator for minimal corrosion. The textured surfaces were found to assist in the cellular proliferation of fibroblasts and inhibit bacterial growth.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.