Detecting uniform differential item functioning for continuous response computerized adaptive testing

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL
Chun Wang, Ruoyi Zhu
{"title":"Detecting uniform differential item functioning for continuous response computerized adaptive testing","authors":"Chun Wang, Ruoyi Zhu","doi":"10.1177/01466216241227544","DOIUrl":null,"url":null,"abstract":"Evaluating items for potential differential item functioning (DIF) is an essential step to ensuring measurement fairness. In this article, we focus on a specific scenario, namely, the continuous response, severely sparse, computerized adaptive testing (CAT). Continuous responses items are growingly used in performance-based tasks because they tend to generate more information than traditional dichotomous items. Severe sparsity arises when many items are automatically generated via machine learning algorithms. We propose two uniform DIF detection methods in this scenario. The first is a modified version of the CAT-SIBTEST, a non-parametric method that does not depend on any specific item response theory model assumptions. The second is a regularization method, a parametric, model-based approach. Simulation studies show that both methods are effective in correctly identifying items with uniform DIF. A real data analysis is provided in the end to illustrate the utility and potential caveats of the two methods.","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216241227544","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Evaluating items for potential differential item functioning (DIF) is an essential step to ensuring measurement fairness. In this article, we focus on a specific scenario, namely, the continuous response, severely sparse, computerized adaptive testing (CAT). Continuous responses items are growingly used in performance-based tasks because they tend to generate more information than traditional dichotomous items. Severe sparsity arises when many items are automatically generated via machine learning algorithms. We propose two uniform DIF detection methods in this scenario. The first is a modified version of the CAT-SIBTEST, a non-parametric method that does not depend on any specific item response theory model assumptions. The second is a regularization method, a parametric, model-based approach. Simulation studies show that both methods are effective in correctly identifying items with uniform DIF. A real data analysis is provided in the end to illustrate the utility and potential caveats of the two methods.
检测连续反应计算机自适应测试的统一差异项目功能
评估项目的潜在差异项目功能(DIF)是确保测量公平性的重要步骤。在本文中,我们将重点讨论一种特定的情况,即连续反应、严重稀疏的计算机化自适应测试(CAT)。连续反应项目越来越多地用于基于成绩的任务中,因为与传统的二分法项目相比,连续反应项目往往能产生更多的信息。当许多项目是通过机器学习算法自动生成时,就会出现严重的稀疏性。在这种情况下,我们提出了两种统一的 DIF 检测方法。第一种是 CAT-SIBTEST 的改进版,这是一种非参数方法,不依赖于任何特定的项目反应理论模型假设。第二种是正则化方法,这是一种基于模型的参数方法。模拟研究表明,这两种方法都能有效地正确识别具有统一 DIF 的项目。最后提供了一个真实数据分析,以说明这两种方法的实用性和潜在的注意事项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信