Machine learning-based prediction of multi-muon events in the INO-ICAL prototype stack

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Deepak Samuel, L. Murgod
{"title":"Machine learning-based prediction of multi-muon events in the INO-ICAL prototype stack","authors":"Deepak Samuel, L. Murgod","doi":"10.1088/2399-6528/ad1f72","DOIUrl":null,"url":null,"abstract":"\n The upcoming India-based Neutrino Observatory (INO) will host a 50 kton magnetized Iron Calorimeter (ICAL) to study atmospheric neutrinos. As part of its proposal, small-scale prototype detectors have been built and are in operation. The primary focus in these prototypes has been on detector characterization studies. At the same time, few physics analyses were also carried out with the cosmic muon data collected. However, due to the small size of the detectors, such analyses always relied on the assumption that the tracks were of single muons only. Consequently, multi-muon events were discarded as noisy events, reducing the physics potential. In this work, we report the development of a machine learning model to predict multi-muon events, study its efficiency and report the muon multiplicity distribution observed using cosmic muon events from the prototype detector.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/ad1f72","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The upcoming India-based Neutrino Observatory (INO) will host a 50 kton magnetized Iron Calorimeter (ICAL) to study atmospheric neutrinos. As part of its proposal, small-scale prototype detectors have been built and are in operation. The primary focus in these prototypes has been on detector characterization studies. At the same time, few physics analyses were also carried out with the cosmic muon data collected. However, due to the small size of the detectors, such analyses always relied on the assumption that the tracks were of single muons only. Consequently, multi-muon events were discarded as noisy events, reducing the physics potential. In this work, we report the development of a machine learning model to predict multi-muon events, study its efficiency and report the muon multiplicity distribution observed using cosmic muon events from the prototype detector.
INO-ICAL 原型堆栈中基于机器学习的多介子事件预测
即将建成的印度中微子天文台(INO)将安装一个 50 kton 的磁化铁量热器(ICAL),用于研究大气中微子。作为其建议的一部分,小型原型探测器已经建成并投入使用。这些原型的主要重点是探测器特性研究。同时,还利用收集到的宇宙μ介子数据进行了一些物理分析。然而,由于探测器的尺寸较小,这些分析总是依赖于单μ介子轨道的假设。因此,多μ介子事件被当作噪声事件丢弃,从而降低了物理潜力。在这项工作中,我们报告了用于预测多μ介子事件的机器学习模型的开发情况,研究了其效率,并报告了利用原型探测器中的宇宙μ介子事件观测到的μ介子倍率分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信