{"title":"Machine learning-based prediction of multi-muon events in the INO-ICAL prototype stack","authors":"Deepak Samuel, L. Murgod","doi":"10.1088/2399-6528/ad1f72","DOIUrl":null,"url":null,"abstract":"\n The upcoming India-based Neutrino Observatory (INO) will host a 50 kton magnetized Iron Calorimeter (ICAL) to study atmospheric neutrinos. As part of its proposal, small-scale prototype detectors have been built and are in operation. The primary focus in these prototypes has been on detector characterization studies. At the same time, few physics analyses were also carried out with the cosmic muon data collected. However, due to the small size of the detectors, such analyses always relied on the assumption that the tracks were of single muons only. Consequently, multi-muon events were discarded as noisy events, reducing the physics potential. In this work, we report the development of a machine learning model to predict multi-muon events, study its efficiency and report the muon multiplicity distribution observed using cosmic muon events from the prototype detector.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/ad1f72","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The upcoming India-based Neutrino Observatory (INO) will host a 50 kton magnetized Iron Calorimeter (ICAL) to study atmospheric neutrinos. As part of its proposal, small-scale prototype detectors have been built and are in operation. The primary focus in these prototypes has been on detector characterization studies. At the same time, few physics analyses were also carried out with the cosmic muon data collected. However, due to the small size of the detectors, such analyses always relied on the assumption that the tracks were of single muons only. Consequently, multi-muon events were discarded as noisy events, reducing the physics potential. In this work, we report the development of a machine learning model to predict multi-muon events, study its efficiency and report the muon multiplicity distribution observed using cosmic muon events from the prototype detector.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.