Improving sulfur transformation of lean electrolyte lithium–sulfur battery using nickel nanoparticles encapsulated in N-doped carbon nanotubes

Electron Pub Date : 2024-01-18 DOI:10.1002/elt2.19
Ze Zhang, Yuqing Xu, Donggen Xiong, Ji Yu, Jianxin Cai, Yizhong Huang, Zhenyu Yang
{"title":"Improving sulfur transformation of lean electrolyte lithium–sulfur battery using nickel nanoparticles encapsulated in N-doped carbon nanotubes","authors":"Ze Zhang,&nbsp;Yuqing Xu,&nbsp;Donggen Xiong,&nbsp;Ji Yu,&nbsp;Jianxin Cai,&nbsp;Yizhong Huang,&nbsp;Zhenyu Yang","doi":"10.1002/elt2.19","DOIUrl":null,"url":null,"abstract":"<p>Efficient redox reactions of lean electrolyte lithium–sulfur (Li–S) batteries highly rely on rational catalyst design. Herein, we report an electrocatalyst based on N-doped carbon nanotubes (CNT)-encapsulated Ni nanoparticles (Ni@NCNT) as kinetics regulators for Li–S batteries to propel the polysulfide-involving multiphase transformation. Moreover, such a CNT-encapsulation strategy greatly prevents the aggregation of Ni nanoparticles and enables the extraordinary structural stability of the hybrid electrocatalyst, which guarantees its persistent catalytic activity on sulfur redox reactions. When used as a modified layer on a commercial separator, the Ni@NCNT interlayer contributes to stabilizing S cathode and Li anode by significantly retarding the shuttle effect. The corresponding batteries with a 3.5 mg cm<sup>−2</sup> sulfur loading achieve the promising cycle stability with ∼85% capacity retention at the electrolyte/sulfur ratios of 5 and 3 μL mg<sup>−1</sup>. Even at a high loading of 12.2 mg cm<sup>−2</sup>, the battery affords an areal capacity of 7.5 mA h cm<sup>−2</sup>.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.19","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elt2.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient redox reactions of lean electrolyte lithium–sulfur (Li–S) batteries highly rely on rational catalyst design. Herein, we report an electrocatalyst based on N-doped carbon nanotubes (CNT)-encapsulated Ni nanoparticles (Ni@NCNT) as kinetics regulators for Li–S batteries to propel the polysulfide-involving multiphase transformation. Moreover, such a CNT-encapsulation strategy greatly prevents the aggregation of Ni nanoparticles and enables the extraordinary structural stability of the hybrid electrocatalyst, which guarantees its persistent catalytic activity on sulfur redox reactions. When used as a modified layer on a commercial separator, the Ni@NCNT interlayer contributes to stabilizing S cathode and Li anode by significantly retarding the shuttle effect. The corresponding batteries with a 3.5 mg cm−2 sulfur loading achieve the promising cycle stability with ∼85% capacity retention at the electrolyte/sulfur ratios of 5 and 3 μL mg−1. Even at a high loading of 12.2 mg cm−2, the battery affords an areal capacity of 7.5 mA h cm−2.

Abstract Image

使用包裹在掺 N 碳纳米管中的纳米镍颗粒改善贫电解质锂硫电池的硫转化性能
贫电解质锂硫(Li-S)电池的高效氧化还原反应高度依赖于合理的催化剂设计。在此,我们报告了一种基于掺杂 N 的碳纳米管(CNT)封装镍纳米颗粒(Ni@NCNT)的电催化剂,作为锂-硫电池的动力学调节剂,可推动涉及多硫化物的多相转变。此外,这种 CNT 包封策略极大地防止了镍纳米粒子的聚集,使混合电催化剂具有超强的结构稳定性,从而保证了其在硫氧化还原反应中的持久催化活性。当 Ni@NCNT 中间层用作商用隔膜上的改性层时,可通过显著抑制穿梭效应来稳定 S 阴极和锂阳极。在电解质/硫比为 5 和 3 μL mg-1 时,硫负载量为 3.5 mg cm-2 的相应电池具有良好的循环稳定性,容量保持率可达 ∼ 85%。即使在 12.2 mg cm-2 的高负载条件下,电池的平均容量也能达到 7.5 mA h cm-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信