Steady-state bifurcations and patterns formation in a diffusive toxic-phytoplankton–zooplankton model

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jingen Yang, Yuanxian Hui, Zhong Zhao
{"title":"Steady-state bifurcations and patterns formation in a diffusive toxic-phytoplankton–zooplankton model","authors":"Jingen Yang, Yuanxian Hui, Zhong Zhao","doi":"10.1142/s1793524523501139","DOIUrl":null,"url":null,"abstract":"In this paper, we study a diffusive toxic-phytoplankton–zooplankton model with prey-taxis under Neumann boundary condition. By analyzing the characteristic equation, we discuss the local stability of the positive constant solutions and show the repulsive prey-taxis is the key factor that destabilizes the solutions. By means of the abstract bifurcation theorem, we investigate the existence of non-constant positive steady-state solutions bifurcating from the constant coexistence equilibrium. Furthermore, we obtain the criterion for the stability of the branching solutions near the bifurcation point. Numerical simulations support our theoretical results, together with some interesting phenomena, stable heterogeneous periodic solutions emerge when prey-tactic sensitivity coefficient is well below the critical value, and zooplankton populations present extinction and continued transitions as habitat size increases.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793524523501139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a diffusive toxic-phytoplankton–zooplankton model with prey-taxis under Neumann boundary condition. By analyzing the characteristic equation, we discuss the local stability of the positive constant solutions and show the repulsive prey-taxis is the key factor that destabilizes the solutions. By means of the abstract bifurcation theorem, we investigate the existence of non-constant positive steady-state solutions bifurcating from the constant coexistence equilibrium. Furthermore, we obtain the criterion for the stability of the branching solutions near the bifurcation point. Numerical simulations support our theoretical results, together with some interesting phenomena, stable heterogeneous periodic solutions emerge when prey-tactic sensitivity coefficient is well below the critical value, and zooplankton populations present extinction and continued transitions as habitat size increases.
扩散性有毒浮游生物-浮游动物模型中的稳态分岔和模式形成
本文研究了在 Neumann 边界条件下带有猎物-底栖生物的扩散毒性浮游动物-浮游动物模型。通过分析特征方程,我们讨论了正常量解的局部稳定性,并证明了具有排斥性的猎物-底栖生物是破坏解稳定性的关键因素。通过抽象分岔定理,我们研究了从恒定共存均衡分岔出来的非恒定正稳态解的存在性。此外,我们还获得了分岔点附近分支解的稳定性准则。数值模拟支持了我们的理论结果,同时还出现了一些有趣的现象:当捕食-接触敏感系数远低于临界值时,会出现稳定的异质周期解;随着栖息地面积的增加,浮游动物种群会出现灭绝和持续过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信