Small-Space Spectral Sparsification via Bounded-Independence Sampling

IF 0.8 Q3 COMPUTER SCIENCE, THEORY & METHODS
Dean Doron, Jack Murtagh, Salil P. Vadhan, David Zuckerman
{"title":"Small-Space Spectral Sparsification via Bounded-Independence Sampling","authors":"Dean Doron, Jack Murtagh, Salil P. Vadhan, David Zuckerman","doi":"10.1145/3637034","DOIUrl":null,"url":null,"abstract":"\n We give a deterministic, nearly logarithmic-space algorithm for mild spectral sparsification of undirected graphs. Given a weighted, undirected graph\n G\n on\n n\n vertices described by a binary string of length\n N\n , an integer\n k\n ≤ log \n n\n , and an error parameter ϵ > 0, our algorithm runs in space\n \n \\(\\tilde{O}(k\\log (N\\cdot w_{\\mathrm{max}}/w_{\\mathrm{min}})) \\)\n \n where\n w\n max\n and\n w\n min\n are the maximum and minimum edge weights in\n G\n , and produces a weighted graph\n H\n with\n \n \\(\\tilde{O}(n^{1+2/k}/\\epsilon ^2) \\)\n \n edges that spectrally approximates\n G\n , in the sense of Spielmen and Teng [54], up to an error of ϵ.\n \n \n Our algorithm is based on a new bounded-independence analysis of Spielman and Srivastava’s effective resistance based edge sampling algorithm [53] and uses results from recent work on space-bounded Laplacian solvers [43]. In particular, we demonstrate an inherent tradeoff (via upper and lower bounds) between the amount of (bounded) independence used in the edge sampling algorithm, denoted by\n k\n above, and the resulting sparsity that can be achieved.\n","PeriodicalId":44045,"journal":{"name":"ACM Transactions on Computation Theory","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3637034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We give a deterministic, nearly logarithmic-space algorithm for mild spectral sparsification of undirected graphs. Given a weighted, undirected graph G on n vertices described by a binary string of length N , an integer k ≤ log  n , and an error parameter ϵ > 0, our algorithm runs in space \(\tilde{O}(k\log (N\cdot w_{\mathrm{max}}/w_{\mathrm{min}})) \) where w max and w min are the maximum and minimum edge weights in G , and produces a weighted graph H with \(\tilde{O}(n^{1+2/k}/\epsilon ^2) \) edges that spectrally approximates G , in the sense of Spielmen and Teng [54], up to an error of ϵ. Our algorithm is based on a new bounded-independence analysis of Spielman and Srivastava’s effective resistance based edge sampling algorithm [53] and uses results from recent work on space-bounded Laplacian solvers [43]. In particular, we demonstrate an inherent tradeoff (via upper and lower bounds) between the amount of (bounded) independence used in the edge sampling algorithm, denoted by k above, and the resulting sparsity that can be achieved.
通过有界独立性采样实现小空间谱稀疏化
我们给出了一种用于无向图温和谱稀疏化的确定性近对数空间算法。给定一个由长度为 N 的二进制字符串描述的 n 个顶点上的加权无向图 G、一个整数 k ≤ log n 和一个误差参数 ϵ > 0,我们的算法在空间 \(\tilde{O}(k\log (N\cdot w_\mathrm{max}}/w_{\mathrm{min}})) 中运行。\),其中 w max 和 w min 是 G 中最大和最小的边权重,生成的加权图 H 带有 \(\tilde{O}(n^{1+2/k}/\epsilon ^2) \)条边,在 Spielmen 和 Teng [54] 的意义上,频谱上近似于 G,误差不超过 ϵ。 我们的算法基于对 Spielman 和 Srivastava 基于有效阻力的边缘采样算法 [53] 的新的有界独立性分析,并使用了最近关于空间有界拉普拉斯求解器 [43] 的研究成果。特别是,我们证明了边缘采样算法中使用的(有界)独立性量(以上用 k 表示)与所能达到的稀疏性之间的内在权衡(通过上下限)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Computation Theory
ACM Transactions on Computation Theory COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
2.30
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信