Agriculture Named Entity Recognition—Towards FAIR, Reusable Scholarly Contributions in Agriculture

Knowledge Pub Date : 2024-01-19 DOI:10.3390/knowledge4010001
Jennifer D’Souza
{"title":"Agriculture Named Entity Recognition—Towards FAIR, Reusable Scholarly Contributions in Agriculture","authors":"Jennifer D’Souza","doi":"10.3390/knowledge4010001","DOIUrl":null,"url":null,"abstract":"We introduce the Open Research Knowledge Graph Agriculture Named Entity Recognition (the ORKG Agri-NER) corpus and service for contribution-centric scientific entity extraction and classification. The ORKG Agri-NER corpus is a seminal benchmark for the evaluation of contribution-centric scientific entity extraction and classification in the agricultural domain. It comprises titles of scholarly papers that are available as Open Access articles on a major publishing platform. We describe the creation of this corpus and highlight the obtained findings in terms of the following features: (1) a generic conceptual formalism focused on capturing scientific entities in agriculture that reflect the direct contribution of a work; (2) a performance benchmark for named entity recognition of scientific entities in the agricultural domain by empirically evaluating various state-of-the-art sequence labeling neural architectures and transformer models; and (3) a delineated 3-step automatic entity resolution procedure for the resolution of the scientific entities to an authoritative ontology, specifically AGROVOC that is released in the Linked Open Vocabularies cloud. With this work we aim to provide a strong foundation for future work on the automatic discovery of scientific entities in the scholarly literature of the agricultural domain.","PeriodicalId":510293,"journal":{"name":"Knowledge","volume":"47 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/knowledge4010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the Open Research Knowledge Graph Agriculture Named Entity Recognition (the ORKG Agri-NER) corpus and service for contribution-centric scientific entity extraction and classification. The ORKG Agri-NER corpus is a seminal benchmark for the evaluation of contribution-centric scientific entity extraction and classification in the agricultural domain. It comprises titles of scholarly papers that are available as Open Access articles on a major publishing platform. We describe the creation of this corpus and highlight the obtained findings in terms of the following features: (1) a generic conceptual formalism focused on capturing scientific entities in agriculture that reflect the direct contribution of a work; (2) a performance benchmark for named entity recognition of scientific entities in the agricultural domain by empirically evaluating various state-of-the-art sequence labeling neural architectures and transformer models; and (3) a delineated 3-step automatic entity resolution procedure for the resolution of the scientific entities to an authoritative ontology, specifically AGROVOC that is released in the Linked Open Vocabularies cloud. With this work we aim to provide a strong foundation for future work on the automatic discovery of scientific entities in the scholarly literature of the agricultural domain.
农业命名实体识别--实现农业学术贡献的 FAIR 和可重用性
我们介绍了开放研究知识图谱农业命名实体识别(ORKG Agri-NER)语料库和以贡献为中心的科学实体提取与分类服务。ORKG Agri-NER 语料库是评估农业领域以贡献为中心的科学实体提取和分类的开创性基准。该语料库由学术论文的标题组成,这些学术论文在一个主要的出版平台上以开放获取文章的形式提供。我们将介绍该语料库的创建过程,并重点介绍在以下方面取得的研究成果:(1)一个通用的概念形式主义,侧重于捕捉农业领域的科学实体,这些实体反映了一项工作的直接贡献;(2)通过对各种最先进的序列标记神经架构和转换器模型进行实证评估,为农业领域科学实体的命名实体识别提供了一个性能基准;以及(3)一个划定的三步自动实体解析程序,用于将科学实体解析为权威本体,特别是关联开放词汇表云中发布的 AGROVOC。通过这项工作,我们旨在为今后在农业领域学术文献中自动发现科学实体的工作奠定坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信