A Magnet Splicing Method for Constructing a Three-Dimensional Self-Decoupled Magnetic Tactile Sensor

IF 2.6 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Huangzhe Dai, Zheyan Wu, Chenxian Meng, Chengqian Zhang, Peng Zhao
{"title":"A Magnet Splicing Method for Constructing a Three-Dimensional Self-Decoupled Magnetic Tactile Sensor","authors":"Huangzhe Dai, Zheyan Wu, Chenxian Meng, Chengqian Zhang, Peng Zhao","doi":"10.3390/magnetochemistry10010006","DOIUrl":null,"url":null,"abstract":"Tactile sensory organs for three-dimensional (3D) force perception are essential for most living organisms and enable them to perform complex and sophisticated tasks to survive and evolve. Magnetic-based tactile sensors have been developed rapidly in recent years due to the exploitability of 3D force decoupling. Here, a method of magnet splicing is introduced, which can be applied to a magnetic tactile sensor to realize 3D self-decoupling of magnets’ displacements. This method enables the magnets to produce a completely consistent magnetic field distribution as the ideal magnetization model within a certain working range, eliminating the compensation and correction of the 3D magnetic flux density signal. This method carves out a new way for the practical application of 3D decoupling theory, showcasing the great potential in the fields of magnetic sensors and magnetic actuators.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry10010006","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Tactile sensory organs for three-dimensional (3D) force perception are essential for most living organisms and enable them to perform complex and sophisticated tasks to survive and evolve. Magnetic-based tactile sensors have been developed rapidly in recent years due to the exploitability of 3D force decoupling. Here, a method of magnet splicing is introduced, which can be applied to a magnetic tactile sensor to realize 3D self-decoupling of magnets’ displacements. This method enables the magnets to produce a completely consistent magnetic field distribution as the ideal magnetization model within a certain working range, eliminating the compensation and correction of the 3D magnetic flux density signal. This method carves out a new way for the practical application of 3D decoupling theory, showcasing the great potential in the fields of magnetic sensors and magnetic actuators.
一种用于构建三维自去耦磁性触觉传感器的磁铁拼接方法
用于感知三维(3D)力的触觉感觉器官对大多数生物体来说都是必不可少的,它使生物体能够执行复杂而精密的任务,从而得以生存和进化。由于三维力解耦的可利用性,磁性触觉传感器近年来得到了快速发展。本文介绍了一种磁铁拼接方法,它可应用于磁性触觉传感器,实现磁铁位移的三维自解耦。这种方法能使磁体在一定的工作范围内产生与理想磁化模型完全一致的磁场分布,无需对三维磁通密度信号进行补偿和校正。这种方法为三维解耦理论的实际应用开辟了一条新途径,展示了其在磁传感器和磁驱动器领域的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Magnetochemistry
Magnetochemistry Chemistry-Chemistry (miscellaneous)
CiteScore
3.90
自引率
11.10%
发文量
145
审稿时长
11 weeks
期刊介绍: Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信