T. Freiesleben, Lasse Rokkedahl Berntsen, Maria Blæsbjerg, Emilia Høffer, Christian Rasmussen, Nicolaj Krog Larsen
{"title":"Beach-ridge formation as a possible indicator for an open Limfjord – North Sea connection","authors":"T. Freiesleben, Lasse Rokkedahl Berntsen, Maria Blæsbjerg, Emilia Høffer, Christian Rasmussen, Nicolaj Krog Larsen","doi":"10.34194/geusb.v57.8358","DOIUrl":null,"url":null,"abstract":"Raised beach ridges are prograded sequences of wave-built deposits that may provide valuable information about past relative sea-level changes, climate change and coastal evolution. In the Limfjord in northern Denmark, the Early and Middle Holocene sea-level changes are well-constrained. However, our understanding of Late Holocene sea-level fluctuations is limited, and the exact period when the coastal barrier between the Limfjord and the North Sea formed remains uncertain. In this study, we use optically stimulated luminescence (OSL) dating to determine the age of raised beach ridges at Gjellerodde in the western part of the Limfjord. The OSL ages presented here indicate that the beach ridges formed during three periods at 3.3–2.7, 1.4–1.0, 0.2–0.1 ka. In addition our data suggest a c. 0.2 mm/yr relative sea-level fall during the Late Holocene. The three distinct periods of beach-ridge formation coincide with periods when the Limfjord was open towards the North Sea as documented in historical records and marine records. This suggests that OSL dating of beach ridges can be used as a potential indicator for determining when the connection between the Limfjord and the North Sea was open in the Late Holocene.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"31 51","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.34194/geusb.v57.8358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Raised beach ridges are prograded sequences of wave-built deposits that may provide valuable information about past relative sea-level changes, climate change and coastal evolution. In the Limfjord in northern Denmark, the Early and Middle Holocene sea-level changes are well-constrained. However, our understanding of Late Holocene sea-level fluctuations is limited, and the exact period when the coastal barrier between the Limfjord and the North Sea formed remains uncertain. In this study, we use optically stimulated luminescence (OSL) dating to determine the age of raised beach ridges at Gjellerodde in the western part of the Limfjord. The OSL ages presented here indicate that the beach ridges formed during three periods at 3.3–2.7, 1.4–1.0, 0.2–0.1 ka. In addition our data suggest a c. 0.2 mm/yr relative sea-level fall during the Late Holocene. The three distinct periods of beach-ridge formation coincide with periods when the Limfjord was open towards the North Sea as documented in historical records and marine records. This suggests that OSL dating of beach ridges can be used as a potential indicator for determining when the connection between the Limfjord and the North Sea was open in the Late Holocene.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.