Improving the Efficiency of College Art Teaching Based on Neural Networks

Xi Jin
{"title":"Improving the Efficiency of College Art Teaching Based on Neural Networks","authors":"Xi Jin","doi":"10.4018/ijwltt.336546","DOIUrl":null,"url":null,"abstract":"How to develop a teaching management system to improve the teaching efficiency of art courses has become an important challenge at present. This article takes university art teaching courses as the research object, uses dynamic L-M algorithm to optimize a large number of parameters, proposes an improved neural networks evaluation model, comprehensively analyzes the main influencing factors of art course teaching effectiveness, and establishes a teaching efficiency index evaluation system. The research results indicate that equating the number of hidden layer nodes to the number of samples can improve the performance of neural networks. The improved L-M algorithm was used to train the neural networks, and the maximum error of all test samples was only 0.04, verifying the feasibility and rationality of the improved neural networks model for evaluating course teaching effectiveness. The research results provide theoretical data support for neural networks to improve the efficiency of university art education.","PeriodicalId":506438,"journal":{"name":"International Journal of Web-Based Learning and Teaching Technologies","volume":"129 50","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web-Based Learning and Teaching Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijwltt.336546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

How to develop a teaching management system to improve the teaching efficiency of art courses has become an important challenge at present. This article takes university art teaching courses as the research object, uses dynamic L-M algorithm to optimize a large number of parameters, proposes an improved neural networks evaluation model, comprehensively analyzes the main influencing factors of art course teaching effectiveness, and establishes a teaching efficiency index evaluation system. The research results indicate that equating the number of hidden layer nodes to the number of samples can improve the performance of neural networks. The improved L-M algorithm was used to train the neural networks, and the maximum error of all test samples was only 0.04, verifying the feasibility and rationality of the improved neural networks model for evaluating course teaching effectiveness. The research results provide theoretical data support for neural networks to improve the efficiency of university art education.
基于神经网络提高高校美术教学效率
如何开发教学管理系统以提高美术课程的教学效率已成为当前面临的重要挑战。本文以高校艺术类课程教学为研究对象,采用动态L-M算法对大量参数进行优化,提出了改进的神经网络评价模型,综合分析了艺术类课程教学效果的主要影响因素,建立了教学效率指标评价体系。研究结果表明,将隐层节点数等同于样本数可以提高神经网络的性能。采用改进的 L-M 算法对神经网络进行训练,所有测试样本的最大误差仅为 0.04,验证了改进的神经网络模型用于课程教学效果评价的可行性和合理性。研究成果为神经网络提高高校艺术教育效率提供了理论数据支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信