On topological degree for pseudomonotone operators in fractional Orlicz-Sobolev spaces: study of positive solutions of non-local elliptic problems

IF 0.8 Q2 MATHEMATICS
H. El-Houari, H. Sabiki, H. Moussa
{"title":"On topological degree for pseudomonotone operators in fractional Orlicz-Sobolev spaces: study of positive solutions of non-local elliptic problems","authors":"H. El-Houari,&nbsp;H. Sabiki,&nbsp;H. Moussa","doi":"10.1007/s43036-023-00313-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, we analyze the existence of infinite sequences of ordered solutions for a class of non-local elliptic problem with Dirichlet boundary condition. The primary techniques employed consist of topological degree theory for mappings of type <span>\\(S_+\\)</span> and minimization arguments in a fractional Orlicz–Sobolev space. Our main results generalize some recent findings in the literature to non-smooth cases.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-023-00313-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, we analyze the existence of infinite sequences of ordered solutions for a class of non-local elliptic problem with Dirichlet boundary condition. The primary techniques employed consist of topological degree theory for mappings of type \(S_+\) and minimization arguments in a fractional Orlicz–Sobolev space. Our main results generalize some recent findings in the literature to non-smooth cases.

论分数奥利兹-索博列夫空间中伪单调算子的拓扑度:非局部椭圆问题的正解研究
在这项研究中,我们分析了一类具有 Dirichlet 边界条件的非局部椭圆问题的有序解的无限序列的存在性。所采用的主要技术包括 \(S_+\) 型映射的拓扑度理论和分数奥利兹-索博列夫空间中的最小化论证。我们的主要结果将文献中的一些最新发现推广到了非光滑情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信