Realization of a Wide Stopband Filter Using the Weakest Electric Field Method and Electromagnetic Hybrid Coupling Method

IF 0.9 4区 工程技术 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xiaohei Yan, Minjie Guo
{"title":"Realization of a Wide Stopband Filter Using the Weakest Electric Field Method and Electromagnetic Hybrid Coupling Method","authors":"Xiaohei Yan,&nbsp;Minjie Guo","doi":"10.1155/2024/9298815","DOIUrl":null,"url":null,"abstract":"<div>\n <p>To enhance filter performance in terms of stopband, we propose a wide-stopband substrate-integrated waveguide filter based on the rejection of higher-order modes. The filter establishes the inner and outer coupling windows at the mode’s weakest electric field to achieve mode suppression. Simultaneously, we employ the electromagnetic hybrid coupling theory to analyze the electromagnetic distribution of the particular modes and determine the dimensions of the coupling circular apertures and slits based on the extracted coupling coefficients to attain suppression of the specific modes. The filter successfully suppresses all higher-order modes having resonant frequencies below that of the TE<sub>150</sub> mode, as demonstrated by simulation results. We conducted measurements and found that the filter has a center frequency of 4.78 GHz, a bandwidth of 100 MHz with a -3 dB attenuation, and a stopband of -25 dB that extends up to 16.62 GHz (i.e., 3.48 times the center frequency). Simulation and measurement results demonstrate a good correlation. This method, compared to other SIW filters, is easy to design, has a wider stopband range, can be readily applied to practical microwave communication systems, and has potential applications.</p>\n </div>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9298815","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/9298815","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

To enhance filter performance in terms of stopband, we propose a wide-stopband substrate-integrated waveguide filter based on the rejection of higher-order modes. The filter establishes the inner and outer coupling windows at the mode’s weakest electric field to achieve mode suppression. Simultaneously, we employ the electromagnetic hybrid coupling theory to analyze the electromagnetic distribution of the particular modes and determine the dimensions of the coupling circular apertures and slits based on the extracted coupling coefficients to attain suppression of the specific modes. The filter successfully suppresses all higher-order modes having resonant frequencies below that of the TE150 mode, as demonstrated by simulation results. We conducted measurements and found that the filter has a center frequency of 4.78 GHz, a bandwidth of 100 MHz with a -3 dB attenuation, and a stopband of -25 dB that extends up to 16.62 GHz (i.e., 3.48 times the center frequency). Simulation and measurement results demonstrate a good correlation. This method, compared to other SIW filters, is easy to design, has a wider stopband range, can be readily applied to practical microwave communication systems, and has potential applications.

Abstract Image

利用最弱电场法和电磁混合耦合法实现宽截止带滤波器
为了提高滤波器的阻带性能,我们提出了一种基于高阶模式抑制的宽阻带基片集成波导滤波器。该滤波器在模式最弱电场处建立内外耦合窗口,以实现模式抑制。同时,我们采用电磁混合耦合理论分析特定模式的电磁分布,并根据提取的耦合系数确定耦合圆孔和狭缝的尺寸,以实现对特定模式的抑制。模拟结果表明,滤波器成功抑制了谐振频率低于 TE150 模式的所有高阶模式。我们进行了测量,发现滤波器的中心频率为 4.78 GHz,带宽为 100 MHz,衰减为 -3 dB,阻带为 -25 dB,最高可达 16.62 GHz(即中心频率的 3.48 倍)。仿真和测量结果显示了良好的相关性。与其他 SIW 滤波器相比,这种方法易于设计,止带范围更宽,可随时应用于实际微波通信系统,具有潜在的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
23.50%
发文量
489
审稿时长
3 months
期刊介绍: International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology. Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . . -Computer-Aided Modeling -Computer-Aided Analysis -Computer-Aided Optimization -Software and Manufacturing Techniques -Computer-Aided Measurements -Measurements Interfaced with CAD Systems In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信