Localization in 3D Wireless Sensor Networks with Obstacle Consideration

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Prabhat Kumar, Sneha Mishra, Surjit Singh, S. Nikolovski, M. Louzazni
{"title":"Localization in 3D Wireless Sensor Networks with Obstacle Consideration","authors":"Prabhat Kumar, Sneha Mishra, Surjit Singh, S. Nikolovski, M. Louzazni","doi":"10.1155/2024/3426319","DOIUrl":null,"url":null,"abstract":"Wireless sensor network (WSN) refers to the network formed by sensor nodes for communicating sensed data over the wireless medium. These sensor nodes are mostly deployed randomly in the target area, and hence estimating the coordinates of these sensor nodes through the localization process is an important activity. Majority of the localization algorithms existing in the literature assume the target area to be an obstacle-free 2D terrain. However, such algorithms are not suitable for real-life scenarios where WSNs are actually deployed on 3D terrains that may also have obstacles that hinder the radio signals from the deployed sensor nodes. Hence, factors such as the height of the terrain, the presence of obstacles, etc., require significant considerations while designing algorithms for WSN. The proposed research presents a localization scheme for 3D WSN where the sensor nodes are randomly deployed in a 3D area having large obstacles. The proposed scheme adopts a distributed approach for calculating the virtual coordinates of the sensors using four beacon nodes. The deployment area is divided into regions, and each node computes its virtual coordinates with respect to the obstacle. Simulation results indicate an average localization error of 6.93 m. The proposed scheme requires very less computational effort and can be easily adapted in different scenarios.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/3426319","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Wireless sensor network (WSN) refers to the network formed by sensor nodes for communicating sensed data over the wireless medium. These sensor nodes are mostly deployed randomly in the target area, and hence estimating the coordinates of these sensor nodes through the localization process is an important activity. Majority of the localization algorithms existing in the literature assume the target area to be an obstacle-free 2D terrain. However, such algorithms are not suitable for real-life scenarios where WSNs are actually deployed on 3D terrains that may also have obstacles that hinder the radio signals from the deployed sensor nodes. Hence, factors such as the height of the terrain, the presence of obstacles, etc., require significant considerations while designing algorithms for WSN. The proposed research presents a localization scheme for 3D WSN where the sensor nodes are randomly deployed in a 3D area having large obstacles. The proposed scheme adopts a distributed approach for calculating the virtual coordinates of the sensors using four beacon nodes. The deployment area is divided into regions, and each node computes its virtual coordinates with respect to the obstacle. Simulation results indicate an average localization error of 6.93 m. The proposed scheme requires very less computational effort and can be easily adapted in different scenarios.
考虑障碍物的 3D 无线传感器网络定位
无线传感器网络(WSN)是指由传感器节点组成的网络,通过无线介质传输传感数据。这些传感器节点大多随机部署在目标区域,因此通过定位过程估算这些传感器节点的坐标是一项重要工作。现有文献中的大多数定位算法都假定目标区域是无障碍的二维地形。然而,这些算法并不适用于 WSN 实际部署在三维地形上的现实场景,因为三维地形也可能存在障碍物,阻碍已部署传感器节点的无线电信号。因此,在为 WSN 设计算法时,需要重点考虑地形的高度、障碍物的存在等因素。本研究提出了一种三维 WSN 定位方案,在该方案中,传感器节点被随机部署在有大量障碍物的三维区域中。拟议方案采用分布式方法,利用四个信标节点计算传感器的虚拟坐标。部署区域被划分为若干区域,每个节点计算其相对于障碍物的虚拟坐标。仿真结果表明,平均定位误差为 6.93 米。建议的方案所需的计算量非常小,而且可以很容易地适用于不同的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信