Constructing Perturbation Matrices of Prototypes for Enhancing the Performance of Fuzzy Decoding Mechanism

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kaijie Xu, Hanyu E, Junliang Liu, Guoyao Xiao, Xiaoan Tang, Mengdao Xing
{"title":"Constructing Perturbation Matrices of Prototypes for Enhancing the Performance of Fuzzy Decoding Mechanism","authors":"Kaijie Xu,&nbsp;Hanyu E,&nbsp;Junliang Liu,&nbsp;Guoyao Xiao,&nbsp;Xiaoan Tang,&nbsp;Mengdao Xing","doi":"10.1155/2024/5780186","DOIUrl":null,"url":null,"abstract":"<p>Granular computing (GrC) embraces a spectrum of concepts, methodologies, methods, and applications, which dwells upon information granules and their processing. Fuzzy C-means (FCM) based encoding and decoding (granulation-degranulation) mechanism plays a visible role in granular computing. Fuzzy decoding mechanism, also known as the reconstruction (degranulation) problem, has become an intensively studied category in recent years. This study mainly focuses on the improvement of the fuzzy decoding mechanism, and an augmented version achieved through constructing perturbation matrices of prototypes is put forward. Particle swarm optimization is employed to determine a group of optimal perturbation matrices to optimize the prototype matrix and obtain an optimal partition matrix. A series of experiments are carried out to show the enhancement of the proposed method. The experimental results are consistent with the theoretical analysis and demonstrate that the developed method outperforms the traditional FCM-based decoding mechanism.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5780186","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Granular computing (GrC) embraces a spectrum of concepts, methodologies, methods, and applications, which dwells upon information granules and their processing. Fuzzy C-means (FCM) based encoding and decoding (granulation-degranulation) mechanism plays a visible role in granular computing. Fuzzy decoding mechanism, also known as the reconstruction (degranulation) problem, has become an intensively studied category in recent years. This study mainly focuses on the improvement of the fuzzy decoding mechanism, and an augmented version achieved through constructing perturbation matrices of prototypes is put forward. Particle swarm optimization is employed to determine a group of optimal perturbation matrices to optimize the prototype matrix and obtain an optimal partition matrix. A series of experiments are carried out to show the enhancement of the proposed method. The experimental results are consistent with the theoretical analysis and demonstrate that the developed method outperforms the traditional FCM-based decoding mechanism.

构建原型扰动矩阵以提高模糊解码机制的性能
颗粒计算(GrC)包含一系列概念、方法论、方法和应用,涉及信息颗粒及其处理。基于模糊 C-means (FCM) 的编码和解码(颗粒化-去颗粒化)机制在颗粒计算中发挥着明显的作用。模糊解码机制又称重构(解粒)问题,是近年来研究较多的一类问题。本研究主要关注模糊解码机制的改进,提出了一种通过构建原型扰动矩阵实现的增强版本。采用粒子群优化方法确定一组最优扰动矩阵,以优化原型矩阵并获得最佳分区矩阵。通过一系列实验证明了所提方法的优越性。实验结果与理论分析一致,证明所开发的方法优于传统的基于 FCM 的解码机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信