An asymmetric model two-dimensional oscillator

B. Rath, VS Erturk, J. Asad, P. Mallick, R. Jarrar
{"title":"An asymmetric model two-dimensional oscillator","authors":"B. Rath, VS Erturk, J. Asad, P. Mallick, R. Jarrar","doi":"10.1177/14613484241228749","DOIUrl":null,"url":null,"abstract":"We present a novel 2D oscillator with an asymmetric design and investigate its stable vibration utilizing the Ms-DTM method. Initially, we obtain the equations of motion for the proposed system. Subsequently, by employing Taylor expansion of [Formula: see text] and [Formula: see text], the derived nonlinear equations are transformed into linear ones, which we solve analytically using the eigenvalues-eigenfunctions technique. Additionally, we solve the obtained nonlinear system using the Ms-DTM method. Lastly, we examine the stability of the nonlinear system by visualizing the closed nature of the phase portrait.","PeriodicalId":504307,"journal":{"name":"Journal of Low Frequency Noise, Vibration and Active Control","volume":"66 34","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Frequency Noise, Vibration and Active Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14613484241228749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel 2D oscillator with an asymmetric design and investigate its stable vibration utilizing the Ms-DTM method. Initially, we obtain the equations of motion for the proposed system. Subsequently, by employing Taylor expansion of [Formula: see text] and [Formula: see text], the derived nonlinear equations are transformed into linear ones, which we solve analytically using the eigenvalues-eigenfunctions technique. Additionally, we solve the obtained nonlinear system using the Ms-DTM method. Lastly, we examine the stability of the nonlinear system by visualizing the closed nature of the phase portrait.
非对称模型二维振荡器
我们提出了一种采用非对称设计的新型二维振荡器,并利用 Ms-DTM 方法对其稳定振动进行了研究。首先,我们获得了拟议系统的运动方程。随后,通过对 [公式:见正文] 和 [公式:见正文] 进行泰勒展开,将推导出的非线性方程转化为线性方程,并利用特征值-特征函数技术对其进行分析求解。此外,我们使用 Ms-DTM 方法求解得到的非线性系统。最后,我们通过相位图的封闭性来检验非线性系统的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信