A highly efficient n‐CdS/p‐Ag2S/p+‐SnS thin film solar cell: Design and simulation

Tanvir Ahmed, Md. Choyon Islam, Md. Alamin Hossain Pappu, S. Mostaque, B. K. Mondal, J. Hossain
{"title":"A highly efficient n‐CdS/p‐Ag2S/p+‐SnS thin film solar cell: Design and simulation","authors":"Tanvir Ahmed, Md. Choyon Islam, Md. Alamin Hossain Pappu, S. Mostaque, B. K. Mondal, J. Hossain","doi":"10.1002/eng2.12849","DOIUrl":null,"url":null,"abstract":"Silver sulfide (Ag2S) chalcogenide compound can be a viable absorber in the applications of thin film solar cells owing to its optimum bandgap of 1.1 eV and high absorption coefficient. Herein, we propose a novel Ag2S‐based n‐CdS/p‐Ag2S/p+‐SnS double‐heterojunction solar cell. The numerical analysis of the device has been performed with SCAPS‐1D (Solar Cell Capacitance Simulator). In the case of single heterojunction, n‐CdS/p‐Ag2S manifests an efficiency of 19.75%, where VOC = 0.66 V, JSC = 36.99 mA/cm2 and FF = 81.50%. However, Ag2S‐based double‐heterojunction device with optimized structure provides the efficiency of 29.51% with VOC = 0.81 V, JSC = 42.81 mA/cm2 and FF =85.24%. The noteworthy augmentation of VOC and JSC in double‐heterojunction results from the reduction in surface recombination velocity and rise in built‐in voltage in the p‐Ag2S/p+‐SnS hetero‐interfaces that promote the higher efficiency of the device. These theoretical insights indicate a path for fabrication of an efficient Ag2S based thin film solar cell.","PeriodicalId":502604,"journal":{"name":"Engineering Reports","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/eng2.12849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Silver sulfide (Ag2S) chalcogenide compound can be a viable absorber in the applications of thin film solar cells owing to its optimum bandgap of 1.1 eV and high absorption coefficient. Herein, we propose a novel Ag2S‐based n‐CdS/p‐Ag2S/p+‐SnS double‐heterojunction solar cell. The numerical analysis of the device has been performed with SCAPS‐1D (Solar Cell Capacitance Simulator). In the case of single heterojunction, n‐CdS/p‐Ag2S manifests an efficiency of 19.75%, where VOC = 0.66 V, JSC = 36.99 mA/cm2 and FF = 81.50%. However, Ag2S‐based double‐heterojunction device with optimized structure provides the efficiency of 29.51% with VOC = 0.81 V, JSC = 42.81 mA/cm2 and FF =85.24%. The noteworthy augmentation of VOC and JSC in double‐heterojunction results from the reduction in surface recombination velocity and rise in built‐in voltage in the p‐Ag2S/p+‐SnS hetero‐interfaces that promote the higher efficiency of the device. These theoretical insights indicate a path for fabrication of an efficient Ag2S based thin film solar cell.
高效 n-CdS/p-Ag2S/p+-SnS 薄膜太阳能电池:设计与模拟
由于硫化银(Ag2S)具有 1.1 eV 的最佳带隙和较高的吸收系数,因此在薄膜太阳能电池的应用中是一种可行的吸收剂。在此,我们提出了一种基于 Ag2S 的新型 n-CdS/p-Ag2S/p+-SnS 双氦结太阳能电池。我们使用 SCAPS-1D(太阳能电池电容模拟器)对该器件进行了数值分析。在单异质结情况下,n-CdS/p-Ag2S 的效率为 19.75%,其中 VOC = 0.66 V,JSC = 36.99 mA/cm2,FF = 81.50%。然而,具有优化结构的基于 Ag2S 的双单向结器件的效率为 29.51%,其中 VOC = 0.81 V,JSC = 42.81 mA/cm2,FF = 85.24%。双异质结中值得注意的 VOC 和 JSC 的增加是由于 p-Ag2S/p+-SnS 异质界面中表面重组速度的降低和内置电压的升高促进了器件效率的提高。这些理论见解为制造基于 Ag2S 的高效薄膜太阳能电池指明了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信