Human-robot collaborative task planning for assembly system productivity enhancement

Anil Kumar Inkulu, M.V.A. Raju Bahubalendruni
{"title":"Human-robot collaborative task planning for assembly system productivity enhancement","authors":"Anil Kumar Inkulu, M.V.A. Raju Bahubalendruni","doi":"10.1108/ria-05-2023-0067","DOIUrl":null,"url":null,"abstract":"\nPurpose\nIn the current era of Industry 4.0, the manufacturing industries are striving toward mass production with mass customization by considering human–robot collaboration. This study aims to propose the reconfiguration of assembly systems by incorporating multiple humans with robots using a human–robot task allocation (HRTA) to enhance productivity.\n\n\nDesign/methodology/approach\nA human–robot task scheduling approach has been developed by considering task suitability, resource availability and resource selection through multicriteria optimization using the Linear Regression with Optimal Point and Minimum Distance Calculation algorithm. Using line-balancing techniques, the approach estimates the optimum number of resources required for assembly tasks operating by minimum idle time.\n\n\nFindings\nThe task allocation schedule for a case study involving a punching press was solved using human–robot collaboration, and the approach incorporated the optimum number of appropriate resources to handle different types of proportion of resources.\n\n\nOriginality/value\nThis proposed work integrates the task allocation by human–robot collaboration and decrease the idle time of resource by integrating optimum number of resources.\n","PeriodicalId":501194,"journal":{"name":"Robotic Intelligence and Automation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotic Intelligence and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ria-05-2023-0067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose In the current era of Industry 4.0, the manufacturing industries are striving toward mass production with mass customization by considering human–robot collaboration. This study aims to propose the reconfiguration of assembly systems by incorporating multiple humans with robots using a human–robot task allocation (HRTA) to enhance productivity. Design/methodology/approach A human–robot task scheduling approach has been developed by considering task suitability, resource availability and resource selection through multicriteria optimization using the Linear Regression with Optimal Point and Minimum Distance Calculation algorithm. Using line-balancing techniques, the approach estimates the optimum number of resources required for assembly tasks operating by minimum idle time. Findings The task allocation schedule for a case study involving a punching press was solved using human–robot collaboration, and the approach incorporated the optimum number of appropriate resources to handle different types of proportion of resources. Originality/value This proposed work integrates the task allocation by human–robot collaboration and decrease the idle time of resource by integrating optimum number of resources.
提高装配系统生产率的人机协作任务规划
目的在当前的工业 4.0 时代,制造业正通过考虑人机协作,努力实现大规模定制生产。本研究旨在提出通过使用人机任务分配(HRTA)将多人与机器人结合在一起,对装配系统进行重新配置,以提高生产率。设计/方法/途径通过使用线性回归与最优点和最小距离计算算法,考虑任务适用性、资源可用性和资源选择,开发了一种人机任务调度方法。研究结果利用人机协作解决了涉及冲床的案例研究中的任务分配调度问题,该方法纳入了处理不同类型资源比例的最佳适当资源数量。原创性/价值这项提议的工作通过人机协作整合了任务分配,并通过整合最佳资源数量减少了资源闲置时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信