Modeling of Average Nusselt Number by Machine Learning and Interpolation Techniques

B. Pekmen Geridonmez
{"title":"Modeling of Average Nusselt Number by Machine Learning and Interpolation Techniques","authors":"B. Pekmen Geridonmez","doi":"10.1115/1.4064562","DOIUrl":null,"url":null,"abstract":"\n In this study, an important heat transfer and fluid flow parameter, average Nusselt number Nu¯, is statistically modeled by using the data obtained from a numerical process. The two dimensional, time dependent dimensionless equations of natural convection flow either in the absence or in the presence of a uniform inclined magnetic field (MF) is numerically solved by using global radial basis function (RBF) method in spatial derivatives and the second order backward differentiation formula (BDF2) in time derivatives. Numerical simulations are performed in a set of combined dimensionless problem parameters. A data set with inputs Rayleigh number Ra, Prandtl number Pr and with output Nu¯ in the absence of MF, and a data set with inputs Ra, Pr, Hartmann number Ha, inclination angle gamma and with output Nu¯ in the presence of inclined uniform MF are saved. The obtained data is separated into train and test sets. Then, Nu¯ is firstly modeled by Neural Networks (NN). Secondly, interpolation is also examined. In terms of mean squared error metric, NN outputs give the best goodness of fit results comparing to curve fitting on test data. On the other side, it is shown that interpolation is also an alternative for modeling. This modeling issue enables one to get the desired result without making heavy numerical calculations many times.","PeriodicalId":505153,"journal":{"name":"ASME Journal of Heat and Mass Transfer","volume":"17 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Journal of Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, an important heat transfer and fluid flow parameter, average Nusselt number Nu¯, is statistically modeled by using the data obtained from a numerical process. The two dimensional, time dependent dimensionless equations of natural convection flow either in the absence or in the presence of a uniform inclined magnetic field (MF) is numerically solved by using global radial basis function (RBF) method in spatial derivatives and the second order backward differentiation formula (BDF2) in time derivatives. Numerical simulations are performed in a set of combined dimensionless problem parameters. A data set with inputs Rayleigh number Ra, Prandtl number Pr and with output Nu¯ in the absence of MF, and a data set with inputs Ra, Pr, Hartmann number Ha, inclination angle gamma and with output Nu¯ in the presence of inclined uniform MF are saved. The obtained data is separated into train and test sets. Then, Nu¯ is firstly modeled by Neural Networks (NN). Secondly, interpolation is also examined. In terms of mean squared error metric, NN outputs give the best goodness of fit results comparing to curve fitting on test data. On the other side, it is shown that interpolation is also an alternative for modeling. This modeling issue enables one to get the desired result without making heavy numerical calculations many times.
利用机器学习和插值技术建立平均努塞尔特数模型
在本研究中,利用数值过程中获得的数据,对一个重要的传热和流体流动参数--平均努塞尔特数 Nu¯--进行了统计建模。利用全局径向基函数(RBF)方法的空间导数和二阶反向微分公式(BDF2)的时间导数,对无或有均匀倾斜磁场(MF)时自然对流的二维、时间相关无量纲方程进行了数值求解。数值模拟是在一组组合的无量纲问题参数下进行的。保存了在无 MF 时输入雷利数 Ra、普朗特数 Pr 和输出 Nu¯ 的数据集,以及在有倾斜均匀 MF 时输入 Ra、Pr、哈特曼数 Ha、倾角 gamma 和输出 Nu¯ 的数据集。获得的数据分为训练集和测试集。然后,首先用神经网络(NN)对 Nu¯ 进行建模。其次,还对插值进行了研究。从均方误差指标来看,与测试数据的曲线拟合相比,NN 输出的拟合效果最好。另一方面,插值法也是建模的一种替代方法。这一建模问题使人们无需多次进行繁重的数值计算就能获得所需的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信