M. Khan, Khursheed Ahmad, Waseem Raza, R. A. Khan, Manas Sutradhar, Anup Paul
{"title":"Hydrothermally Synthesized MoS2 as Electrochemical Catalyst for the Fabrication of Thiabendazole Electrochemical Sensor and Dye Sensitized Solar Cells","authors":"M. Khan, Khursheed Ahmad, Waseem Raza, R. A. Khan, Manas Sutradhar, Anup Paul","doi":"10.3390/catal14020107","DOIUrl":null,"url":null,"abstract":"In this work we reported the hydrothermal preparation of molybdenum disulfide (MoS2). The phase purity and crystalline nature of the synthesized MoS2 were examined via the powder X-ray diffraction method. The surface morphological structure of the MoS2 was examined using scanning electron microscopy and transmission electron microscopy. The specific surface area of the MoS2 was calculated using the Brunauer-Emmett-Teller method. The elemental composition and distribution of the Mo and S elements were determined using energy-dispersive X-ray spectroscopy. The oxidation states of the Mo and S elements were studied through employing X-ray photoelectron spectroscopy. In further studies, we modified the active surface area (3 mm) of the glassy carbon (GC) electrode using MoS2 as an electrocatalyst. The MoS2 modified GC electrode (MSGC) was used as an electrochemical sensor for the detection of thiabendazole (TBZ). Linear sweep voltammetry (LSV) was used as the electrochemical sensing technique. The MSGC exhibited good performance in the detection of TBZ. A limit of detection of 0.1 µM with a sensitivity of 7.47 µA/µM.cm2 was obtained for the detection of TBZ using the LSV method. The MSGC also showed good selectivity for the detection of TBZ in the presence of various interfering compounds. The obtained results showed that MoS2 has good electrocatalytic properties. This motivated us to explore the catalytic properties of MoS2 in dye sensitized solar cells (DSSCs). Thus, we have fabricated DSSCs using MoS2 as a platinum-free counter electrode material. The MoS2 counter electrode-based DSSCs showed good power conversion efficiency of more than 5%. We believe that the present work is beneficial for the scientific community, and especially for research surrounding the design and fabrication of catalysts for electrochemical sensing and DSSC applications.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"43 34","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal14020107","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this work we reported the hydrothermal preparation of molybdenum disulfide (MoS2). The phase purity and crystalline nature of the synthesized MoS2 were examined via the powder X-ray diffraction method. The surface morphological structure of the MoS2 was examined using scanning electron microscopy and transmission electron microscopy. The specific surface area of the MoS2 was calculated using the Brunauer-Emmett-Teller method. The elemental composition and distribution of the Mo and S elements were determined using energy-dispersive X-ray spectroscopy. The oxidation states of the Mo and S elements were studied through employing X-ray photoelectron spectroscopy. In further studies, we modified the active surface area (3 mm) of the glassy carbon (GC) electrode using MoS2 as an electrocatalyst. The MoS2 modified GC electrode (MSGC) was used as an electrochemical sensor for the detection of thiabendazole (TBZ). Linear sweep voltammetry (LSV) was used as the electrochemical sensing technique. The MSGC exhibited good performance in the detection of TBZ. A limit of detection of 0.1 µM with a sensitivity of 7.47 µA/µM.cm2 was obtained for the detection of TBZ using the LSV method. The MSGC also showed good selectivity for the detection of TBZ in the presence of various interfering compounds. The obtained results showed that MoS2 has good electrocatalytic properties. This motivated us to explore the catalytic properties of MoS2 in dye sensitized solar cells (DSSCs). Thus, we have fabricated DSSCs using MoS2 as a platinum-free counter electrode material. The MoS2 counter electrode-based DSSCs showed good power conversion efficiency of more than 5%. We believe that the present work is beneficial for the scientific community, and especially for research surrounding the design and fabrication of catalysts for electrochemical sensing and DSSC applications.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico