Chenchen Bian, Miaomiao Liu, Jiayi Cheng, Lei Yang*, Zhanxian Li* and Mingming Yu*,
{"title":"Dual-Functional Fluorescent Probe in the Diagnosis of Liver Injury and the Evaluation of Drug Therapy with Double Signal Amplification","authors":"Chenchen Bian, Miaomiao Liu, Jiayi Cheng, Lei Yang*, Zhanxian Li* and Mingming Yu*, ","doi":"10.1021/cbmi.3c00128","DOIUrl":null,"url":null,"abstract":"<p >Viscosity and polarity are crucial microenvironmental parameters within cells, intimately linked to the physiological activities of organisms. We constructed and synthesized an innovative dual-functional fluorescent probe, DHBP. In the green channel, the fluorescence signal notably intensifies with decreasing environmental polarity, while in the red channel, fluorescence signal amplification occurs due to the collaborative effects of viscosity and polarity, resulting in more pronounced changes. Additionally, DHBP demonstrates high sensitivity in detecting changes in polarity and viscosity induced by drug-induced inflammation in cells and mice. Importantly, DHBP has been effectively utilized to monitor alterations in viscosity and polarity in the liver injury induced by diabetes in vivo in mice and further employed to assess the therapeutic efficacy of drugs. Therefore, DHBP holds promise for advancing research on viscosity and polarity in future studies of physiological and pathological processes.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 2","pages":"156–164"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00128","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.3c00128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Viscosity and polarity are crucial microenvironmental parameters within cells, intimately linked to the physiological activities of organisms. We constructed and synthesized an innovative dual-functional fluorescent probe, DHBP. In the green channel, the fluorescence signal notably intensifies with decreasing environmental polarity, while in the red channel, fluorescence signal amplification occurs due to the collaborative effects of viscosity and polarity, resulting in more pronounced changes. Additionally, DHBP demonstrates high sensitivity in detecting changes in polarity and viscosity induced by drug-induced inflammation in cells and mice. Importantly, DHBP has been effectively utilized to monitor alterations in viscosity and polarity in the liver injury induced by diabetes in vivo in mice and further employed to assess the therapeutic efficacy of drugs. Therefore, DHBP holds promise for advancing research on viscosity and polarity in future studies of physiological and pathological processes.
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging