{"title":"Crack Propagation Phenomenon in Gangue Concrete Using the Digital Image Correlation (DIC) Method","authors":"Cheng Pan, Zhiming Zheng, Yu Yang","doi":"10.1155/2024/7247770","DOIUrl":null,"url":null,"abstract":"In order to study the mode I crack propagation mechanism of coal gangue concrete with different contents, the digital image correlation (DIC) method was used to carry out the three-point bending fracture tests on coal gangue concrete with different contents. The results show that the process of the mode I crack propagation of coal gangue concrete with different contents can be divided into three stages as follows: the elastic stage before crack initiation, extended viscoelastic stage, and extended fracture stage. The amount of coal gangue has a significant impact on the crack propagation path. The more the amount of coal gangue, the more the crack penetrates through the coal gangue coarse aggregate, the smaller the bending degree of the failure path, and the faster the crack propagation to the penetration speed. The crack initiation load, ultimate load, external force work, gravity work, and fracture energy all decrease with the increase of the coal gangue content. The data obtained by the DIC method and displacement extensometer are in good agreement, which proves that the DIC method is feasible. Based on the DIC method, before reaching the horizontal displacement on both sides of the crack tip, the horizontal displacement of the horizontal pixel is very small and there is a jump increase after the ultimate load. There are obvious inflection points on the left and right, and the horizontal displacement remains unchanged after the inflection point. After the horizontal displacement field of crack propagation reaches the limit load, there is an obvious limit; the limit gradually extends upward, and the corresponding crack tip strain field is also gradually enhanced. The more the coal gangue is added, the smaller the corresponding horizontal displacement and strain field is at the same limit load moment. The shape of the crack generation area of coal gangue concrete takes the crack tip as the axis of symmetry and is “gourd shaped.” The more the content of the crack, the larger the crack generation area.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"171 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2024/7247770","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In order to study the mode I crack propagation mechanism of coal gangue concrete with different contents, the digital image correlation (DIC) method was used to carry out the three-point bending fracture tests on coal gangue concrete with different contents. The results show that the process of the mode I crack propagation of coal gangue concrete with different contents can be divided into three stages as follows: the elastic stage before crack initiation, extended viscoelastic stage, and extended fracture stage. The amount of coal gangue has a significant impact on the crack propagation path. The more the amount of coal gangue, the more the crack penetrates through the coal gangue coarse aggregate, the smaller the bending degree of the failure path, and the faster the crack propagation to the penetration speed. The crack initiation load, ultimate load, external force work, gravity work, and fracture energy all decrease with the increase of the coal gangue content. The data obtained by the DIC method and displacement extensometer are in good agreement, which proves that the DIC method is feasible. Based on the DIC method, before reaching the horizontal displacement on both sides of the crack tip, the horizontal displacement of the horizontal pixel is very small and there is a jump increase after the ultimate load. There are obvious inflection points on the left and right, and the horizontal displacement remains unchanged after the inflection point. After the horizontal displacement field of crack propagation reaches the limit load, there is an obvious limit; the limit gradually extends upward, and the corresponding crack tip strain field is also gradually enhanced. The more the coal gangue is added, the smaller the corresponding horizontal displacement and strain field is at the same limit load moment. The shape of the crack generation area of coal gangue concrete takes the crack tip as the axis of symmetry and is “gourd shaped.” The more the content of the crack, the larger the crack generation area.
期刊介绍:
Advances in Materials Science and Engineering is a broad scope journal that publishes articles in all areas of materials science and engineering including, but not limited to:
-Chemistry and fundamental properties of matter
-Material synthesis, fabrication, manufacture, and processing
-Magnetic, electrical, thermal, and optical properties of materials
-Strength, durability, and mechanical behaviour of materials
-Consideration of materials in structural design, modelling, and engineering
-Green and renewable materials, and consideration of materials’ life cycles
-Materials in specialist applications (such as medicine, energy, aerospace, and nanotechnology)