How to determine a curve singularity

J. Elias
{"title":"How to determine a curve singularity","authors":"J. Elias","doi":"10.4153/s000843952400002x","DOIUrl":null,"url":null,"abstract":"<p>We characterize the finite codimension sub-<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127042025273-0301:S000843952400002X:S000843952400002X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbf {k}}$</span></span></img></span></span>-algebras of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127042025273-0301:S000843952400002X:S000843952400002X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbf {k}}[\\![t]\\!]$</span></span></img></span></span> as the solutions of a computable finite family of higher differential operators. For this end, we establish a duality between such a sub-algebras and the finite codimension <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127042025273-0301:S000843952400002X:S000843952400002X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbf {k}}$</span></span></img></span></span>-vector spaces of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127042025273-0301:S000843952400002X:S000843952400002X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbf {k}}[u]$</span></span></img></span></span>, this ring acts on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127042025273-0301:S000843952400002X:S000843952400002X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbf {k}}[\\![t]\\!]$</span></span></img></span></span> by differentiation.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"329 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s000843952400002x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We characterize the finite codimension sub-Abstract Image${\mathbf {k}}$-algebras of Abstract Image${\mathbf {k}}[\![t]\!]$ as the solutions of a computable finite family of higher differential operators. For this end, we establish a duality between such a sub-algebras and the finite codimension Abstract Image${\mathbf {k}}$-vector spaces of Abstract Image${\mathbf {k}}[u]$, this ring acts on Abstract Image${\mathbf {k}}[\![t]\!]$ by differentiation.

如何确定曲线奇点
我们将${\mathbf {k}}$ 的有限标度子${\mathbf {k}}[\![t]\!]$ 描述为可计算的有限高微分算子族的解。为此,我们建立了这样一个子代数与${/mathbf {k}}[u]$ 的有限维${/mathbf {k}}$ 向量空间之间的对偶性,这个环通过微分作用于${/mathbf {k}}[\![t]\!]$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信