{"title":"Compact Archimedean spiral antenna with high gain for electrostatic discharge detection","authors":"Tong Wang, Dongwei Chen, Mingjie Li, Weidong Liu, Qingyuan Fang","doi":"10.1049/mia2.12455","DOIUrl":null,"url":null,"abstract":"<p>A compact Archimedean spiral antenna with high gain for electrostatic discharge (ESD) detection is investigated. A frustum-shaped cavity proposed in this work is formed to optimise the maximum antenna gain. Additionally, a helix arm is loaded to enhance antenna gain in lower band. The measured results demonstrate that the proposed antenna, which employs a unidirectional radiation mode, exhibits a maximum antenna gain ranging from −0.74 dBi to 9.46 dBi and a voltage standing wave ratio less than 3 across a frequency range of 0.65–5 GHz. A test system consisted of proposed antenna and a commercial ESD detection antenna is established. The verified results indicate that the proposed antenna has a performance close to the commercial antenna, so that proposed antenna with compact size is preferred to be utilised for ESD detection.</p>","PeriodicalId":13374,"journal":{"name":"Iet Microwaves Antennas & Propagation","volume":"18 3","pages":"147-154"},"PeriodicalIF":1.1000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.12455","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Microwaves Antennas & Propagation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mia2.12455","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A compact Archimedean spiral antenna with high gain for electrostatic discharge (ESD) detection is investigated. A frustum-shaped cavity proposed in this work is formed to optimise the maximum antenna gain. Additionally, a helix arm is loaded to enhance antenna gain in lower band. The measured results demonstrate that the proposed antenna, which employs a unidirectional radiation mode, exhibits a maximum antenna gain ranging from −0.74 dBi to 9.46 dBi and a voltage standing wave ratio less than 3 across a frequency range of 0.65–5 GHz. A test system consisted of proposed antenna and a commercial ESD detection antenna is established. The verified results indicate that the proposed antenna has a performance close to the commercial antenna, so that proposed antenna with compact size is preferred to be utilised for ESD detection.
期刊介绍:
Topics include, but are not limited to:
Microwave circuits including RF, microwave and millimetre-wave amplifiers, oscillators, switches, mixers and other components implemented in monolithic, hybrid, multi-chip module and other technologies. Papers on passive components may describe transmission-line and waveguide components, including filters, multiplexers, resonators, ferrite and garnet devices. For applications, papers can describe microwave sub-systems for use in communications, radar, aerospace, instrumentation, industrial and medical applications. Microwave linear and non-linear measurement techniques.
Antenna topics including designed and prototyped antennas for operation at all frequencies; multiband antennas, antenna measurement techniques and systems, antenna analysis and design, aperture antenna arrays, adaptive antennas, printed and wire antennas, microstrip, reconfigurable, conformal and integrated antennas.
Computational electromagnetics and synthesis of antenna structures including phased arrays and antenna design algorithms.
Radiowave propagation at all frequencies and environments.
Current Special Issue. Call for papers:
Metrology for 5G Technologies - https://digital-library.theiet.org/files/IET_MAP_CFP_M5GT_SI2.pdf