Xingge Yu , Shengjie Jiang , Dejian Li , Steve GF. Shen , Xudong Wang , Kaili Lin
{"title":"Osteoimmunomodulatory bioinks for 3D bioprinting achieve complete regeneration of critical-sized bone defects","authors":"Xingge Yu , Shengjie Jiang , Dejian Li , Steve GF. Shen , Xudong Wang , Kaili Lin","doi":"10.1016/j.compositesb.2024.111256","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Regeneration the critical-sized bone defects remains a great challenge to clinical therapy due to the inflammatory microenvironment and lack of stem cells in the region of the bone defects. 3D bioprinted scaffolds based on bioactive ink and loaded active cells can promote the inflammatory microenvironment and cell viability, thereby enhancing bone regeneration. In this study, 10 % Gelatin-methacryloyl (GelMA)/5%Sr substituted xonotlite (Sr-CSH) </span>nanocomposite<span> hydrogel was developed as a bioink to encapsulate bone marrow mesenchymal stem cells (BMSCs), and then constructed a </span></span>biomimetic<span> bone tissue by 3D bioprinting. The incorporation of Sr-CSH </span></span>nanowires<span> enhanced the printing accuracy and mechanical property of GelMA, and enhanced the osteogenic differentiation of BMSCs. In addition, Sr-CSH induced macrophage M2 polarization, which modulated the inflammatory microenvironment and further promoted osteogenic differentiation of BMSCs. In rat critical-sized calvarial defects model, 3D bioprinted scaffolds based on GelMA-Sr-CSH bioinks laden with BMSCs achieve complete bone repair. In summary, this study developed an osteoimmunomodulatory bioink, and 3D bioprinted scaffolds laden with stem cells may be an effective method for achieving complete regeneration of critical-sized bone defects.</span></p></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"273 ","pages":"Article 111256"},"PeriodicalIF":14.2000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824000672","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Regeneration the critical-sized bone defects remains a great challenge to clinical therapy due to the inflammatory microenvironment and lack of stem cells in the region of the bone defects. 3D bioprinted scaffolds based on bioactive ink and loaded active cells can promote the inflammatory microenvironment and cell viability, thereby enhancing bone regeneration. In this study, 10 % Gelatin-methacryloyl (GelMA)/5%Sr substituted xonotlite (Sr-CSH) nanocomposite hydrogel was developed as a bioink to encapsulate bone marrow mesenchymal stem cells (BMSCs), and then constructed a biomimetic bone tissue by 3D bioprinting. The incorporation of Sr-CSH nanowires enhanced the printing accuracy and mechanical property of GelMA, and enhanced the osteogenic differentiation of BMSCs. In addition, Sr-CSH induced macrophage M2 polarization, which modulated the inflammatory microenvironment and further promoted osteogenic differentiation of BMSCs. In rat critical-sized calvarial defects model, 3D bioprinted scaffolds based on GelMA-Sr-CSH bioinks laden with BMSCs achieve complete bone repair. In summary, this study developed an osteoimmunomodulatory bioink, and 3D bioprinted scaffolds laden with stem cells may be an effective method for achieving complete regeneration of critical-sized bone defects.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.