Amritpal Kaur, Devershi Pallavi Bhatt, Linesh Raja
{"title":"Developing a Hybrid Irrigation System for Smart Agriculture Using IoT Sensors and Machine Learning in Sri Ganganagar, Rajasthan","authors":"Amritpal Kaur, Devershi Pallavi Bhatt, Linesh Raja","doi":"10.1155/2024/6676907","DOIUrl":null,"url":null,"abstract":"The agriculture sector is one of the largest consumers of fresh water. Different types of irrigation systems are available, including center pivot, drip and sprinkler systems, and linear motion systems. However, the complex structure of existing irrigation systems and their high maintenance costs encourage Indian farmers to continue using these methods. Due to its ease of use and low energy consumption, surface irrigation is one of the most popular irrigation techniques. Although the main reasons for poor irrigation application efficiency are uneven irrigation water distribution and deep absorption, using a variety of technologies, countries are trying to increase the sustainability of agriculture. Automated irrigation systems contribute significantly to water conservation. The combination of automation and Internet of Things (IoT) improves agricultural practices. These technologies help farmers understand their crops, minimize their impact on the environment, and preserve resources. They also enable efficient monitoring of the weather, water resources, and soil. This research proposes an intelligent, low-cost field irrigation system. The proposed prototype can measure soil moisture, rain status, wind speed, water level, temperature, and humidity using a hardware sensor and unit. To decide whether to turn on or off the motor, a variety of sensors are used to get a range of readings and conclusions. They enable automatic watering when soil moisture levels are below a certain threshold, and if soil moisture is equal to the required moisture, then the irrigation process stops. Every few minutes, the sensors measure the environmental factors. Data are collected and stored on a ThingSpeak cloud server for analysis. To evaluate the data we collected, we used a variety of models, such as K-nearest neighbors (KNN), Naïve Bayes, random forest, and logistic regression. Compared to other Naïve Bayes and random forest models, the accuracy rate was 98.8%, the mean square error was 0.16, and the results of logistic regression, KNN, and SVM were in order: (98.3%/1.66), (99.3%/0.66), and (99.5%/0.5), respectively. In the end, an automated irrigation system run on IoT applications gives farmers access to remote monitoring and control, as well as information about the specifics of the irrigation field.","PeriodicalId":48792,"journal":{"name":"Journal of Sensors","volume":"25 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensors","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/6676907","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The agriculture sector is one of the largest consumers of fresh water. Different types of irrigation systems are available, including center pivot, drip and sprinkler systems, and linear motion systems. However, the complex structure of existing irrigation systems and their high maintenance costs encourage Indian farmers to continue using these methods. Due to its ease of use and low energy consumption, surface irrigation is one of the most popular irrigation techniques. Although the main reasons for poor irrigation application efficiency are uneven irrigation water distribution and deep absorption, using a variety of technologies, countries are trying to increase the sustainability of agriculture. Automated irrigation systems contribute significantly to water conservation. The combination of automation and Internet of Things (IoT) improves agricultural practices. These technologies help farmers understand their crops, minimize their impact on the environment, and preserve resources. They also enable efficient monitoring of the weather, water resources, and soil. This research proposes an intelligent, low-cost field irrigation system. The proposed prototype can measure soil moisture, rain status, wind speed, water level, temperature, and humidity using a hardware sensor and unit. To decide whether to turn on or off the motor, a variety of sensors are used to get a range of readings and conclusions. They enable automatic watering when soil moisture levels are below a certain threshold, and if soil moisture is equal to the required moisture, then the irrigation process stops. Every few minutes, the sensors measure the environmental factors. Data are collected and stored on a ThingSpeak cloud server for analysis. To evaluate the data we collected, we used a variety of models, such as K-nearest neighbors (KNN), Naïve Bayes, random forest, and logistic regression. Compared to other Naïve Bayes and random forest models, the accuracy rate was 98.8%, the mean square error was 0.16, and the results of logistic regression, KNN, and SVM were in order: (98.3%/1.66), (99.3%/0.66), and (99.5%/0.5), respectively. In the end, an automated irrigation system run on IoT applications gives farmers access to remote monitoring and control, as well as information about the specifics of the irrigation field.
Journal of SensorsENGINEERING, ELECTRICAL & ELECTRONIC-INSTRUMENTS & INSTRUMENTATION
CiteScore
4.10
自引率
5.30%
发文量
833
审稿时长
18 weeks
期刊介绍:
Journal of Sensors publishes papers related to all aspects of sensors, from their theory and design, to the applications of complete sensing devices. All classes of sensor are covered, including acoustic, biological, chemical, electronic, electromagnetic (including optical), mechanical, proximity, and thermal. Submissions relating to wearable, implantable, and remote sensing devices are encouraged.
Envisaged applications include, but are not limited to:
-Medical, healthcare, and lifestyle monitoring
-Environmental and atmospheric monitoring
-Sensing for engineering, manufacturing and processing industries
-Transportation, navigation, and geolocation
-Vision, perception, and sensing for robots and UAVs
The journal welcomes articles that, as well as the sensor technology itself, consider the practical aspects of modern sensor implementation, such as networking, communications, signal processing, and data management.
As well as original research, the Journal of Sensors also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.