Fructobacillus fructosus OS-1010 strain stimulates intestinal cells to secrete exosomes that activate muscle cells

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
{"title":"Fructobacillus fructosus OS-1010 strain stimulates intestinal cells to secrete exosomes that activate muscle cells","authors":"","doi":"10.1007/s10616-023-00610-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p><em>Fructobacillus</em> is a lactic-acid bacterium recently identified in fructose-rich environments. <em>Fructobacillus</em> is also known to exhibit unusual growth characteristics due to an incomplete gene encoding alcohol/acetaldehyde hydrogenase, which results in an imbalance in the nicotinamide adenine mononucleotide (NAD<sup>+</sup>)/NADN levels. Recently, the addition of <span>d</span>-fructose to the culture medium of <em>Fructobacillus</em> strains increased the intracellular nicotinamide mononucleotide (NMN) content. In the present study, we evaluated the functionality of <em>Fructobacillus</em> that produces high levels of NMN, using one substrain (<em>Fructobacillus fructosus</em> OS-1010). Therefore, in this study, we examined its functionality in the interaction between intestinal cells and muscle cells. The results showed that supernatant derived from intestinal epithelial cells (Caco-2 cells) treated with <em>F. fructosus</em> OS-1010 activated muscle cells (C2C12 cells). Further analysis revealed that Caco-2 cells treated with <em>F. fructosus</em> OS-1010 secreted exosomes known as extracellular vesicles, which activated the muscle cells. Furthermore, pathway analysis of the target genes of miRNA in exosomes revealed that pathways involved in muscle cell activation, including insulin signaling and cardiac muscle regulation, neurotrophic factors, longevity, and anti-aging, can be activated by exosomes. In other words, <em>F. fructosus</em> OS-1010 could activate various cells such as the skin and muscle cells, by secreting functional exosomes from the intestinal tract.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-023-00610-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Fructobacillus is a lactic-acid bacterium recently identified in fructose-rich environments. Fructobacillus is also known to exhibit unusual growth characteristics due to an incomplete gene encoding alcohol/acetaldehyde hydrogenase, which results in an imbalance in the nicotinamide adenine mononucleotide (NAD+)/NADN levels. Recently, the addition of d-fructose to the culture medium of Fructobacillus strains increased the intracellular nicotinamide mononucleotide (NMN) content. In the present study, we evaluated the functionality of Fructobacillus that produces high levels of NMN, using one substrain (Fructobacillus fructosus OS-1010). Therefore, in this study, we examined its functionality in the interaction between intestinal cells and muscle cells. The results showed that supernatant derived from intestinal epithelial cells (Caco-2 cells) treated with F. fructosus OS-1010 activated muscle cells (C2C12 cells). Further analysis revealed that Caco-2 cells treated with F. fructosus OS-1010 secreted exosomes known as extracellular vesicles, which activated the muscle cells. Furthermore, pathway analysis of the target genes of miRNA in exosomes revealed that pathways involved in muscle cell activation, including insulin signaling and cardiac muscle regulation, neurotrophic factors, longevity, and anti-aging, can be activated by exosomes. In other words, F. fructosus OS-1010 could activate various cells such as the skin and muscle cells, by secreting functional exosomes from the intestinal tract.

OS-1010 菌株能刺激肠道细胞分泌外泌体,从而激活肌肉细胞
摘要 果酸杆菌是最近在富含果糖的环境中发现的一种乳酸菌。众所周知,果酸杆菌由于编码醇/乙醛氢化酶的基因不完整,导致烟酰胺腺嘌呤单核苷酸(NAD+)/NADN水平失衡,从而表现出不寻常的生长特性。最近,在果酸杆菌菌株的培养基中添加 d-果糖增加了细胞内烟酰胺单核苷酸(NMN)的含量。在本研究中,我们使用一个子菌株(Fructobacillus fructosus OS-1010)评估了产生大量 NMN 的果酸杆菌的功能。因此,在本研究中,我们考察了其在肠道细胞和肌肉细胞之间相互作用的功能。结果表明,经果蝇OS-1010处理的肠上皮细胞(Caco-2细胞)上清液可激活肌肉细胞(C2C12细胞)。进一步的分析表明,经果糖酵母 OS-1010 处理的 Caco-2 细胞会分泌称为细胞外囊泡的外泌体,从而激活肌肉细胞。此外,对外泌体中 miRNA 的靶基因进行的通路分析表明,外泌体可激活肌肉细胞活化的通路,包括胰岛素信号和心肌调节、神经营养因子、长寿和抗衰老。换句话说,果蝇OS-1010可通过从肠道分泌功能性外泌体激活皮肤和肌肉细胞等多种细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信