Lucas S. Fonseca, Guilherme C. Lessa, Martinho Marta-Almeida, Carlos Eduardo P. Teixeira
{"title":"Coastal Upwelling and Estuarine Gravitational Circulation: A Feedback System in a Tropical Estuary in the South Atlantic","authors":"Lucas S. Fonseca, Guilherme C. Lessa, Martinho Marta-Almeida, Carlos Eduardo P. Teixeira","doi":"10.1007/s12237-023-01312-9","DOIUrl":null,"url":null,"abstract":"<p>This study examines the effects of coastal upwelling on the longitudinal water density gradient within the estuary of Baía de Todos os Santos (BTS), its effect on the gravitational circulation at the estuary entrance, and the reverse effect of gravitational circulation on the coastal upwelling. This investigation was based on a 1-year dataset of observed water temperature, mean velocities, and river discharge, as well as 2 years of numerical simulation of the estuarine flow. The results show that the upwelling regulates the thermohaline field in front of the BTS, decreasing water temperature (up to 3 °C), and increasing density (up to 0.3 kg/m<sup>3</sup>), and have sufficient intensity to more than double the speed, or even establish, the gravitational circulation. It was frequently observed that the water temperature falls after an increase in the subtidal flow shear, suggesting that the estuarine gravitational circulation acts as a facilitator to the upwelling process. Numerical simulations indicate that the coastal upwelling events are also capable of reestablishing the gravitational circulation at times with weak longitudinal density gradient, a scenario that tends to become more frequent and intense in the near future due to the ongoing climate changes.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"17 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuaries and Coasts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12237-023-01312-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the effects of coastal upwelling on the longitudinal water density gradient within the estuary of Baía de Todos os Santos (BTS), its effect on the gravitational circulation at the estuary entrance, and the reverse effect of gravitational circulation on the coastal upwelling. This investigation was based on a 1-year dataset of observed water temperature, mean velocities, and river discharge, as well as 2 years of numerical simulation of the estuarine flow. The results show that the upwelling regulates the thermohaline field in front of the BTS, decreasing water temperature (up to 3 °C), and increasing density (up to 0.3 kg/m3), and have sufficient intensity to more than double the speed, or even establish, the gravitational circulation. It was frequently observed that the water temperature falls after an increase in the subtidal flow shear, suggesting that the estuarine gravitational circulation acts as a facilitator to the upwelling process. Numerical simulations indicate that the coastal upwelling events are also capable of reestablishing the gravitational circulation at times with weak longitudinal density gradient, a scenario that tends to become more frequent and intense in the near future due to the ongoing climate changes.
期刊介绍:
Estuaries and Coasts is the journal of the Coastal and Estuarine Research Federation (CERF). Begun in 1977 as Chesapeake Science, the journal has gradually expanded its scope and circulation. Today, the journal publishes scholarly manuscripts on estuarine and near coastal ecosystems at the interface between the land and the sea where there are tidal fluctuations or sea water is diluted by fresh water. The interface is broadly defined to include estuaries and nearshore coastal waters including lagoons, wetlands, tidal fresh water, shores and beaches, but not the continental shelf. The journal covers research on physical, chemical, geological or biological processes, as well as applications to management of estuaries and coasts. The journal publishes original research findings, reviews and perspectives, techniques, comments, and management applications. Estuaries and Coasts will consider properly carried out studies that present inconclusive findings or document a failed replication of previously published work. Submissions that are primarily descriptive, strongly place-based, or only report on development of models or new methods without detailing their applications fall outside the scope of the journal.