{"title":"Deep kernelization for the Tree Bisection and Reconnection (TBR) distance in phylogenetics","authors":"Steven Kelk , Simone Linz , Ruben Meuwese","doi":"10.1016/j.jcss.2024.103519","DOIUrl":null,"url":null,"abstract":"<div><p>We describe a kernel of size <span><math><mn>9</mn><mi>k</mi><mo>−</mo><mn>8</mn></math></span> for the NP-hard problem of computing the Tree Bisection and Reconnection (TBR) distance <em>k</em> between two unrooted binary phylogenetic trees. To achieve this, we extend the existing portfolio of reduction rules with three new reduction rules. Two of these are based on the idea of topologically transforming the trees in a distance-preserving way in order to guarantee execution of earlier reduction rules. The third rule extends the local neighborhood approach introduced in <span>[20]</span> to more global structures, allowing new situations to be identified when the deletion of a leaf definitely reduces the TBR distance by one. The bound on the kernel size is tight up to an additive term. Our results also apply to the equivalent problem of computing a maximum agreement forest between two unrooted binary phylogenetic trees. We anticipate that our results are widely applicable for computing agreement-forest based dissimilarity measures.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"142 ","pages":"Article 103519"},"PeriodicalIF":1.1000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002200002400014X/pdfft?md5=d95807a5290b9b72c4034f27a39f9776&pid=1-s2.0-S002200002400014X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002200002400014X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
We describe a kernel of size for the NP-hard problem of computing the Tree Bisection and Reconnection (TBR) distance k between two unrooted binary phylogenetic trees. To achieve this, we extend the existing portfolio of reduction rules with three new reduction rules. Two of these are based on the idea of topologically transforming the trees in a distance-preserving way in order to guarantee execution of earlier reduction rules. The third rule extends the local neighborhood approach introduced in [20] to more global structures, allowing new situations to be identified when the deletion of a leaf definitely reduces the TBR distance by one. The bound on the kernel size is tight up to an additive term. Our results also apply to the equivalent problem of computing a maximum agreement forest between two unrooted binary phylogenetic trees. We anticipate that our results are widely applicable for computing agreement-forest based dissimilarity measures.
期刊介绍:
The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions.
Research areas include traditional subjects such as:
• Theory of algorithms and computability
• Formal languages
• Automata theory
Contemporary subjects such as:
• Complexity theory
• Algorithmic Complexity
• Parallel & distributed computing
• Computer networks
• Neural networks
• Computational learning theory
• Database theory & practice
• Computer modeling of complex systems
• Security and Privacy.