Characterization of Fractional Mixed Domination Number of Paths and Cycles

IF 1.3 4区 数学 Q1 MATHEMATICS
P. Shanthi, S. Amutha, N. Anbazhagan, G. Uma, Gyanendra Prasad Joshi, Woong Cho
{"title":"Characterization of Fractional Mixed Domination Number of Paths and Cycles","authors":"P. Shanthi, S. Amutha, N. Anbazhagan, G. Uma, Gyanendra Prasad Joshi, Woong Cho","doi":"10.1155/2024/6619654","DOIUrl":null,"url":null,"abstract":"Let <i>G</i>′ be a simple, connected, and undirected (UD) graph with the vertex set <i>M</i>(<i>G</i>′) and an edge set <i>N</i>(<i>G</i>′). In this article, we define a function <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 13.643 12.7178\" width=\"13.643pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,10.679,0)\"></path></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"17.2251838 -9.28833 23.344 12.7178\" width=\"23.344pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,17.275,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,32.988,0)\"></path></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"43.4741838 -9.28833 32.72 12.7178\" width=\"32.72pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,43.524,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,58.066,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,63.842,0)\"></path></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"79.90318380000001 -9.28833 13.689 12.7178\" width=\"13.689pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,79.953,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,84.438,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,90.678,0)\"></path></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"95.7711838 -9.28833 11.065 12.7178\" width=\"11.065pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,95.821,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,102.061,0)\"></path></g></svg></span> as a fractional mixed dominating function (FMXDF) if it satisfies <span><svg height=\"15.5493pt\" style=\"vertical-align:-5.86298pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.68632 60.785 15.5493\" width=\"60.785pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-103\"></use></g><g transform=\"matrix(.013,0,0,-0.013,8.352,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,12.85,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,20.936,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,28.787,0)\"><use xlink:href=\"#g113-92\"></use></g><g transform=\"matrix(.013,0,0,-0.013,33.272,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,40.539,0)\"><use xlink:href=\"#g113-94\"></use></g><g transform=\"matrix(.013,0,0,-0.013,45.024,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,53.154,0)\"></path></g></svg><span></span><svg height=\"15.5493pt\" style=\"vertical-align:-5.86298pt\" version=\"1.1\" viewbox=\"64.3671838 -9.68632 78.992 15.5493\" width=\"78.992pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,64.417,.007)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,74.204,3.466)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,79.465,3.466)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,83.37,3.466)\"></path></g><g transform=\"matrix(.0065,0,0,-0.0065,89.112,5.567)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,94.979,3.466)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,98.237,3.466)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,103.415,3.466)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,107.268,0)\"><use xlink:href=\"#g113-103\"></use></g><g transform=\"matrix(.013,0,0,-0.013,115.621,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,120.119,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,127.648,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,135.778,0)\"></path></g></svg><span></span><svg height=\"15.5493pt\" style=\"vertical-align:-5.86298pt\" version=\"1.1\" viewbox=\"146.99018379999998 -9.68632 6.656 15.5493\" width=\"6.656pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,147.04,0)\"><use xlink:href=\"#g113-50\"></use></g></svg></span> for all <span><svg height=\"13.7042pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.4361 17.763 13.7042\" width=\"17.763pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-121\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.899,0)\"></path></g></svg><span></span><svg height=\"13.7042pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"21.3451838 -11.4361 45.027 13.7042\" width=\"45.027pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,21.395,0)\"><use xlink:href=\"#g113-78\"></use></g><g transform=\"matrix(.013,0,0,-0.013,34.202,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,38.7,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,47.592,-5.741)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,51.388,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,58.791,0)\"><use xlink:href=\"#g117-59\"></use></g></svg><span></span><span><svg height=\"13.7042pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"69.27818380000001 -11.4361 32.992 13.7042\" width=\"32.992pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,69.328,0)\"><use xlink:href=\"#g113-79\"></use></g><g transform=\"matrix(.013,0,0,-0.013,80.238,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,84.736,0)\"><use xlink:href=\"#g113-72\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,93.628,-5.741)\"><use xlink:href=\"#g50-31\"></use></g><g transform=\"matrix(.013,0,0,-0.013,97.424,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>,</span></span> where <svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 32.3649 12.5794\" width=\"32.3649pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"><use xlink:href=\"#g50-110\"></use></g><g transform=\"matrix(.013,0,0,-0.013,15.937,0)\"><use xlink:href=\"#g113-92\"></use></g><g transform=\"matrix(.013,0,0,-0.013,20.422,0)\"><use xlink:href=\"#g113-121\"></use></g><g transform=\"matrix(.013,0,0,-0.013,27.689,0)\"><use xlink:href=\"#g113-94\"></use></g></svg> indicates the closed mixed neighbourhood of <span><svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.39387 6.1673\" width=\"7.39387pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-121\"></use></g></svg>,</span> that is the set of all <span><svg height=\"14.8655pt\" style=\"vertical-align:-3.4294pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.4361 18.025 14.8655\" width=\"18.025pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-122\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.161,0)\"><use xlink:href=\"#g117-173\"></use></g></svg><span></span><svg height=\"14.8655pt\" style=\"vertical-align:-3.4294pt\" version=\"1.1\" viewbox=\"21.6071838 -11.4361 45.027 14.8655\" width=\"45.027pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,21.657,0)\"><use xlink:href=\"#g113-78\"></use></g><g transform=\"matrix(.013,0,0,-0.013,34.464,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,38.962,0)\"><use xlink:href=\"#g113-72\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,47.854,-5.741)\"><use xlink:href=\"#g50-31\"></use></g><g transform=\"matrix(.013,0,0,-0.013,51.65,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,59.053,0)\"><use xlink:href=\"#g117-59\"></use></g></svg><span></span><svg height=\"14.8655pt\" style=\"vertical-align:-3.4294pt\" version=\"1.1\" viewbox=\"69.54018380000001 -11.4361 32.991 14.8655\" width=\"32.991pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,69.59,0)\"><use xlink:href=\"#g113-79\"></use></g><g transform=\"matrix(.013,0,0,-0.013,80.5,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,84.998,0)\"><use xlink:href=\"#g113-72\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,93.89,-5.741)\"><use xlink:href=\"#g50-31\"></use></g><g transform=\"matrix(.013,0,0,-0.013,97.686,0)\"><use xlink:href=\"#g113-42\"></use></g></svg></span> such that <svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.65486 9.39034\" width=\"7.65486pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-122\"></use></g></svg> is adjacent to <svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.39387 6.1673\" width=\"7.39387pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-121\"></use></g></svg> and <svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.65486 9.39034\" width=\"7.65486pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-122\"></use></g></svg> is incident with <svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.39387 6.1673\" width=\"7.39387pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-121\"></use></g></svg> and also <svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.39387 6.1673\" width=\"7.39387pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-121\"></use></g></svg> itself. Here, <span><svg height=\"13.6586pt\" style=\"vertical-align:-3.97228pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.68632 36.321 13.6586\" width=\"36.321pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,7.71,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,12.208,0)\"><use xlink:href=\"#g113-103\"></use></g><g transform=\"matrix(.013,0,0,-0.013,20.56,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,28.69,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"13.6586pt\" style=\"vertical-align:-3.97228pt\" version=\"1.1\" viewbox=\"39.9031838 -9.68632 68.138 13.6586\" width=\"68.138pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,39.953,.007)\"><use xlink:href=\"#g119-65\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,49.74,3.466)\"><use xlink:href=\"#g50-121\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,54.918,3.466)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,60.187,3.466)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,69.243,3.466)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,74.803,3.466)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,83.175,0)\"><use xlink:href=\"#g113-103\"></use></g><g transform=\"matrix(.013,0,0,-0.013,91.527,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,96.025,0)\"><use xlink:href=\"#g113-121\"></use></g><g transform=\"matrix(.013,0,0,-0.013,103.293,0)\"><use xlink:href=\"#g113-42\"></use></g></svg></span> is the poundage (or weight) of <i>f</i>. The fractional mixed domination number (FMXDN) is denoted by <svg height=\"17.6175pt\" style=\"vertical-align:-6.1814pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.4361 40.6061 17.6175\" width=\"40.6061pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,6.516,-5.741)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,5.668,3.784)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,10.866,3.784)\"><use xlink:href=\"#g50-110\"></use></g><g transform=\"matrix(.013,0,0,-0.013,18.735,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,23.233,0)\"><use xlink:href=\"#g113-72\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,32.125,-5.741)\"><use xlink:href=\"#g50-31\"></use></g><g transform=\"matrix(.013,0,0,-0.013,35.92,0)\"><use xlink:href=\"#g113-42\"></use></g></svg> and is designated as the lowest poundage among all FMXDFs of <span><svg height=\"11.6425pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.4361 12.8205 11.6425\" width=\"12.8205pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.892,-5.741)\"><use xlink:href=\"#g50-31\"></use></g></svg>.</span> We compute the FMXDN of some common graphs such as paths, cycles, and star graphs, the middle graph of paths and cycles, and shadow graphs. Furthermore, we compute upper bounds for the sum of the two fractional dominating parameters, resulting in the inequality <span><svg height=\"17.6175pt\" style=\"vertical-align:-6.1814pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.4361 42.185 17.6175\" width=\"42.185pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-225\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.516,-5.741)\"><use xlink:href=\"#g50-31\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,5.668,3.784)\"><use xlink:href=\"#g50-103\"></use></g><g transform=\"matrix(.0065,0,0,-0.0065,10.391,5.885)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,14.628,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,19.126,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,27.15,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,34.554,0)\"></path></g></svg><span></span><svg height=\"17.6175pt\" style=\"vertical-align:-6.1814pt\" version=\"1.1\" viewbox=\"45.0401838 -11.4361 47.018 17.6175\" width=\"47.018pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,45.09,0)\"><use xlink:href=\"#g113-225\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,51.606,-5.741)\"><use xlink:href=\"#g50-43\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,50.758,3.784)\"><use xlink:href=\"#g50-103\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,55.956,3.784)\"><use xlink:href=\"#g50-110\"></use></g><g transform=\"matrix(.013,0,0,-0.013,63.825,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,68.323,0)\"><use xlink:href=\"#g113-148\"></use></g><g transform=\"matrix(.013,0,0,-0.013,76.347,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,84.477,0)\"></path></g></svg><span></span><svg height=\"17.6175pt\" style=\"vertical-align:-6.1814pt\" version=\"1.1\" viewbox=\"95.6901838 -11.4361 16.024 17.6175\" width=\"16.024pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,95.74,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,104.133,0)\"><use xlink:href=\"#g117-36\"></use></g></svg><span></span><span><svg height=\"17.6175pt\" style=\"vertical-align:-6.1814pt\" version=\"1.1\" viewbox=\"114.6201838 -11.4361 76.998 17.6175\" width=\"76.998pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,114.67,0)\"><use xlink:href=\"#g113-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,125.285,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,135.822,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,140.645,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,146.352,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,153.281,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,157.779,0)\"><use xlink:href=\"#g113-148\"></use></g><g transform=\"matrix(.013,0,0,-0.013,165.803,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,173.207,0)\"><use xlink:href=\"#g117-33\"></use></g><g transform=\"matrix(.013,0,0,-0.013,183.743,0)\"></path></g></svg>,</span></span> where <svg height=\"17.6175pt\" style=\"vertical-align:-6.1814pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.4361 14.7488 17.6175\" width=\"14.7488pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-225\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.516,-5.741)\"><use xlink:href=\"#g50-31\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,5.668,3.784)\"><use xlink:href=\"#g50-103\"></use></g><g transform=\"matrix(.0065,0,0,-0.0065,10.391,5.885)\"><use xlink:href=\"#g176-50\"></use></g></svg> and <svg height=\"16.284pt\" style=\"vertical-align:-6.1815pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.1025 18.8555 16.284\" width=\"18.8555pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-225\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.516,-5.741)\"><use xlink:href=\"#g50-43\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,5.668,3.784)\"><use xlink:href=\"#g50-103\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,10.866,3.784)\"><use xlink:href=\"#g50-110\"></use></g></svg> are the fractional edge domination number and FMXDN, respectively. Finally, we compare <svg height=\"16.284pt\" style=\"vertical-align:-6.1815pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.1025 18.8555 16.284\" width=\"18.8555pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-225\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.516,-5.741)\"><use xlink:href=\"#g50-43\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,5.668,3.784)\"><use xlink:href=\"#g50-103\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,10.866,3.784)\"><use xlink:href=\"#g50-110\"></use></g></svg> to other resolvability-related parameters such as metric and fault-tolerant metric dimensions on some families of graphs.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/6619654","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G′ be a simple, connected, and undirected (UD) graph with the vertex set M(G′) and an edge set N(G′). In this article, we define a function as a fractional mixed dominating function (FMXDF) if it satisfies for all , where indicates the closed mixed neighbourhood of , that is the set of all such that is adjacent to and is incident with and also itself. Here, is the poundage (or weight) of f. The fractional mixed domination number (FMXDN) is denoted by and is designated as the lowest poundage among all FMXDFs of . We compute the FMXDN of some common graphs such as paths, cycles, and star graphs, the middle graph of paths and cycles, and shadow graphs. Furthermore, we compute upper bounds for the sum of the two fractional dominating parameters, resulting in the inequality , where and are the fractional edge domination number and FMXDN, respectively. Finally, we compare to other resolvability-related parameters such as metric and fault-tolerant metric dimensions on some families of graphs.
路径和循环的分数混合支配数的特征
设 G′是一个简单、连通、无向(UD)图,具有顶点集 M(G′)和边集 N(G′)。本文将一个函数定义为分数混合支配函数 (FMXDF),如果它满足所有 ,其中表示 ,的封闭混合邻域,即所有与 ,相邻并与 ,同时也是其自身的集合。我们计算了一些常见图的 FMXDN,如路径图、循环图、星形图、路径图和循环图的中间图以及阴影图。此外,我们还计算了两个分数支配参数之和的上限,从而得出不等式 ,其中 , 和 分别是分数边支配数和 FMXDN。最后,我们还比较了其他与解析度相关的参数,如一些图族的度量维度和容错度量维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信