Another proof of the existence of homothetic solitons of the inverse mean curvature flow
IF 16.4
1区 化学
Q1 CHEMISTRY, MULTIDISCIPLINARY
Shu-Yu Hsu
求助PDF
{"title":"Another proof of the existence of homothetic solitons of the inverse mean curvature flow","authors":"Shu-Yu Hsu","doi":"10.1515/acv-2022-0092","DOIUrl":null,"url":null,"abstract":"We will give a new proof of the existence of non-compact homothetic solitons of the inverse mean curvature flow in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo>×</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0192.png\" /> <jats:tex-math>{\\mathbb{R}^{n}\\times\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0220.png\" /> <jats:tex-math>{n\\geq 2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>r</m:mi> <m:mo>,</m:mo> <m:mrow> <m:mi>y</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>r</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0150.png\" /> <jats:tex-math>{(r,y(r))}</jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>r</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0149.png\" /> <jats:tex-math>{(r(y),y)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>r</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0232.png\" /> <jats:tex-math>{r=|x|}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0257.png\" /> <jats:tex-math>{x\\in\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, is the radially symmetric coordinate and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>y</m:mi> <m:mo>∈</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0266.png\" /> <jats:tex-math>{y\\in\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. More precisely for any <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mfrac> <m:mn>1</m:mn> <m:mi>n</m:mi> </m:mfrac> <m:mo><</m:mo> <m:mi>λ</m:mi> <m:mo><</m:mo> <m:mfrac> <m:mn>1</m:mn> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:mfrac> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0183.png\" /> <jats:tex-math>{\\frac{1}{n}<\\lambda<\\frac{1}{n-1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>μ</m:mi> <m:mo><</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0193.png\" /> <jats:tex-math>{\\mu<0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we will give a new proof of the existence of a unique solution <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>r</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:mrow> <m:msup> <m:mi>C</m:mi> <m:mn>2</m:mn> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>∩</m:mo> <m:mrow> <m:mi>C</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0226.png\" /> <jats:tex-math>{r(y)\\in C^{2}(\\mu,\\infty)\\cap C([\\mu,\\infty))}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of the equation <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mfrac> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mrow> <m:mi>y</m:mi> <m:mo></m:mo> <m:mi>y</m:mi> </m:mrow> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>1</m:mn> <m:mo>+</m:mo> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mi>y</m:mi> </m:msub> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> </m:mrow> </m:mrow> </m:mfrac> <m:mo>=</m:mo> <m:mrow> <m:mfrac> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>r</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mfrac> <m:mo>-</m:mo> <m:mfrac> <m:mrow> <m:mn>1</m:mn> <m:mo>+</m:mo> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mi>y</m:mi> </m:msub> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> </m:mrow> </m:mrow> <m:mrow> <m:mi>λ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mrow> <m:mi>r</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>-</m:mo> <m:mrow> <m:mi>y</m:mi> <m:mo></m:mo> <m:msub> <m:mi>r</m:mi> <m:mi>y</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mfrac> </m:mrow> </m:mrow> <m:mo rspace=\"12.5pt\">,</m:mo> <m:mrow> <m:mrow> <m:mi>r</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0018.png\" /> <jats:tex-math>\\frac{r_{yy}(y)}{1+r_{y}(y)^{2}}=\\frac{n-1}{r(y)}-\\frac{1+r_{y}(y)^{2}}{% \\lambda(r(y)-yr_{y}(y))},\\quad r(y)>0,</jats:tex-math> </jats:alternatives> </jats:disp-formula> in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0144.png\" /> <jats:tex-math>{(\\mu,\\infty)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> which satisfies <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>r</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>μ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0222.png\" /> <jats:tex-math>{r(\\mu)=0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mi>y</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>μ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mo>lim</m:mo> <m:mrow> <m:mi>y</m:mi> <m:mo>↘</m:mo> <m:mi>μ</m:mi> </m:mrow> </m:msub> <m:mo></m:mo> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mi>y</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo>+</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0252.png\" /> <jats:tex-math>{r_{y}(\\mu)=\\lim_{y\\searrow\\mu}r_{y}(y)=+\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove that there exist constants <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>y</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>></m:mo> <m:msub> <m:mi>y</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0138.png\" /> <jats:tex-math>y_{2}>y_{1}>0</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mi>y</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0133.png\" /> <jats:tex-math>r_{y}(y)>0</jats:tex-math> </jats:alternatives> </jats:inline-formula> for any <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>μ</m:mi> <m:mo><</m:mo> <m:mi>y</m:mi> <m:mo><</m:mo> <m:msub> <m:mi>y</m:mi> <m:mn>1</m:mn> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0124.png\" /> <jats:tex-math>\\mu<y<y_{1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mi>y</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>y</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0134.png\" /> <jats:tex-math>r_{y}(y_{1})=0</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mi>y</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo><</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0132.png\" /> <jats:tex-math>r_{y}(y)<0</jats:tex-math> </jats:alternatives> </jats:inline-formula> for any <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>y</m:mi> <m:mo>></m:mo> <m:msub> <m:mi>y</m:mi> <m:mn>1</m:mn> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0137.png\" /> <jats:tex-math>y>y_{1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mrow> <m:mi>y</m:mi> <m:mo></m:mo> <m:mi>y</m:mi> </m:mrow> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo><</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0130.png\" /> <jats:tex-math>r_{yy}(y)<0</jats:tex-math> </jats:alternatives> </jats:inline-formula> for any <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>μ</m:mi> <m:mo><</m:mo> <m:mi>y</m:mi> <m:mo><</m:mo> <m:msub> <m:mi>y</m:mi> <m:mn>2</m:mn> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0125.png\" /> <jats:tex-math>\\mu<y<y_{2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mrow> <m:mi>y</m:mi> <m:mo></m:mo> <m:mi>y</m:mi> </m:mrow> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>y</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0131.png\" /> <jats:tex-math>r_{yy}(y_{2})=0</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mrow> <m:mi>y</m:mi> <m:mo></m:mo> <m:mi>y</m:mi> </m:mrow> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0249.png\" /> <jats:tex-math>{r_{yy}(y)>0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for any <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>y</m:mi> <m:mo>></m:mo> <m:msub> <m:mi>y</m:mi> <m:mn>2</m:mn> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0265.png\" /> <jats:tex-math>{y>y_{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Moreover, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mo>lim</m:mo> <m:mrow> <m:mi>y</m:mi> <m:mo>→</m:mo> <m:mrow> <m:mo>+</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:mrow> </m:msub> <m:mo></m:mo> <m:mrow> <m:mi>r</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0189.png\" /> <jats:tex-math>{\\lim_{y\\to+\\infty}r(y)=0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mo>lim</m:mo> <m:mrow> <m:mi>y</m:mi> <m:mo>→</m:mo> <m:mrow> <m:mo>+</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:mrow> </m:msub> <m:mo></m:mo> <m:mrow> <m:mi>y</m:mi> <m:mo></m:mo> <m:msub> <m:mi>r</m:mi> <m:mi>y</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0190.png\" /> <jats:tex-math>{\\lim_{y\\to+\\infty}yr_{y}(y)=0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2022-0092","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
We will give a new proof of the existence of non-compact homothetic solitons of the inverse mean curvature flow in ℝ n × ℝ {\mathbb{R}^{n}\times\mathbb{R}} , n ≥ 2 {n\geq 2} , of the form ( r , y ( r ) ) {(r,y(r))} or ( r ( y ) , y ) {(r(y),y)} , where r = | x | {r=|x|} , x ∈ ℝ n {x\in\mathbb{R}^{n}} , is the radially symmetric coordinate and y ∈ ℝ {y\in\mathbb{R}} . More precisely for any 1 n < λ < 1 n - 1 {\frac{1}{n}<\lambda<\frac{1}{n-1}} and μ < 0 {\mu<0} , we will give a new proof of the existence of a unique solution r ( y ) ∈ C 2 ( μ , ∞ ) ∩ C ( [ μ , ∞ ) ) {r(y)\in C^{2}(\mu,\infty)\cap C([\mu,\infty))} of the equation r y y ( y ) 1 + r y ( y ) 2 = n - 1 r ( y ) - 1 + r y ( y ) 2 λ ( r ( y ) - y r y ( y ) ) , r ( y ) > 0 , \frac{r_{yy}(y)}{1+r_{y}(y)^{2}}=\frac{n-1}{r(y)}-\frac{1+r_{y}(y)^{2}}{% \lambda(r(y)-yr_{y}(y))},\quad r(y)>0, in ( μ , ∞ ) {(\mu,\infty)} which satisfies r ( μ ) = 0 {r(\mu)=0} and r y ( μ ) = lim y ↘ μ r y ( y ) = + ∞ {r_{y}(\mu)=\lim_{y\searrow\mu}r_{y}(y)=+\infty} . We prove that there exist constants y 2 > y 1 > 0 y_{2}>y_{1}>0 such that r y ( y ) > 0 r_{y}(y)>0 for any μ < y < y 1 \mu<y<y_{1} , r y ( y 1 ) = 0 r_{y}(y_{1})=0 , r y ( y ) < 0 r_{y}(y)<0 for any y > y 1 y>y_{1} , r y y ( y ) < 0 r_{yy}(y)<0 for any μ < y < y 2 \mu<y<y_{2} , r y y ( y 2 ) = 0 r_{yy}(y_{2})=0 and r y y ( y ) > 0 {r_{yy}(y)>0} for any y > y 2 {y>y_{2}} . Moreover, lim y → + ∞ r ( y ) = 0 {\lim_{y\to+\infty}r(y)=0} and lim y → + ∞ y r y ( y ) = 0 {\lim_{y\to+\infty}yr_{y}(y)=0} .
反均值曲率流同向孤子存在的另一个证明
我们将给出一个新的证明:在 ℝ n × ℝ {mathbb{R}^{n}\times\mathbb{R}} 中存在反均值曲率流的非紧凑同调孤子。 , n ≥ 2 {n\geq 2} , 形式为 ( r , y ( r ) ) {(r,y(r))} 或 ( r ( y ) , y ) {(r(y),y)} , 其中 r = | x | {r=|x|} x ∈ ℝ n {x\in\mathbb{R}^{n}} ,是径向对称坐标。 是径向对称坐标,y∈ ℝ {y\in\mathbb{R}} 。 .更确切地说,对于任意 1 n < λ < 1 n - 1 {\frac{1}{n}<\lambda<\frac{1}{n-1}} 和 μ < 0 {\mu<0} ,我们将给出新的证明。 我们将给出一个新的证明,证明存在一个唯一的解 r ( y ) ∈ C 2 ( μ , ∞ ) ∩ C ( [ μ , ∞ ) ) {r(y)\in C^{2}(\mu,\infty)\cap C([\mu,\infty))}的方程 r y y ( y ) 1 + r y ( y ) 2 = n - 1 r ( y ) - 1 + r y ( y ) 2 λ ( r ( y ) - y r y ( y ) ) , r ( y ) > 0 , \frac{r_{yy}(y)}{1+r_{y}(y)^{2}}=\frac{n-1}{r(y)}-\frac{1+r_{y}(y)^{2}}{% \lambda(r(y)-yr_{y}(y))},\quad r(y)>;0, in ( μ , ∞ ) {(\mu,\infty)} which satisfies r ( μ ) = 0 {r(\mu)=0} and r y ( μ ) = lim y ↘ μ r y ( y ) = + ∞ {r_{y}(\mu)=\lim_{y\searrow\mu}r_{y}(y)=+\infty} .我们证明存在常数 y 2 > y 1 > 0 y_{2}>y_{1}>0,使得 r y ( y ) > 0 r_{y}(y)>0 for any μ < y < y 1 \mu<y<y_{1}。 , r y ( y 1 ) = 0 r_{y}(y_{1})=0 , r y ( y ) < 0 r_{y}(y)<0 for any y > y 1 y>y_{1} , r y y ( y ) < 0 r_{y}(y)<0 for any y > y 1 y>y_{1} , r y y ( y ) < 0 r_{yy}(y)<0 for any μ < y < y 2 \mu<y<y_{2} , r y y ( y ) < 0 r_{yy}(y)<0 for any μ < y < y 2 对于任意 y > y 2 {y>y_{2}} ,r y y ( y 2 ) = 0 r_{yy}(y_{2})=0 且 r y y ( y ) > 0 {r_{yy}(y)>0} 。 .此外,lim y → + ∞ r ( y ) = 0 {\lim_{y\to+\infty}r(y)=0} 和 lim y → + ∞ y r y ( y ) = 0 {\lim_{y\to+\infty}yr_{y}(y)=0} .
本文章由计算机程序翻译,如有差异,请以英文原文为准。