Another proof of the existence of homothetic solitons of the inverse mean curvature flow

IF 1.3 3区 数学 Q1 MATHEMATICS
Shu-Yu Hsu
{"title":"Another proof of the existence of homothetic solitons of the inverse mean curvature flow","authors":"Shu-Yu Hsu","doi":"10.1515/acv-2022-0092","DOIUrl":null,"url":null,"abstract":"We will give a new proof of the existence of non-compact homothetic solitons of the inverse mean curvature flow in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo>×</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0192.png\" /> <jats:tex-math>{\\mathbb{R}^{n}\\times\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0220.png\" /> <jats:tex-math>{n\\geq 2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>r</m:mi> <m:mo>,</m:mo> <m:mrow> <m:mi>y</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>r</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0150.png\" /> <jats:tex-math>{(r,y(r))}</jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>r</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0149.png\" /> <jats:tex-math>{(r(y),y)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>r</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0232.png\" /> <jats:tex-math>{r=|x|}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0257.png\" /> <jats:tex-math>{x\\in\\mathbb{R}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, is the radially symmetric coordinate and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>y</m:mi> <m:mo>∈</m:mo> <m:mi>ℝ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0266.png\" /> <jats:tex-math>{y\\in\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. More precisely for any <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mfrac> <m:mn>1</m:mn> <m:mi>n</m:mi> </m:mfrac> <m:mo>&lt;</m:mo> <m:mi>λ</m:mi> <m:mo>&lt;</m:mo> <m:mfrac> <m:mn>1</m:mn> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:mfrac> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0183.png\" /> <jats:tex-math>{\\frac{1}{n}&lt;\\lambda&lt;\\frac{1}{n-1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>μ</m:mi> <m:mo>&lt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0193.png\" /> <jats:tex-math>{\\mu&lt;0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we will give a new proof of the existence of a unique solution <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>r</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:mrow> <m:msup> <m:mi>C</m:mi> <m:mn>2</m:mn> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>∩</m:mo> <m:mrow> <m:mi>C</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0226.png\" /> <jats:tex-math>{r(y)\\in C^{2}(\\mu,\\infty)\\cap C([\\mu,\\infty))}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of the equation <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mfrac> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mrow> <m:mi>y</m:mi> <m:mo>⁢</m:mo> <m:mi>y</m:mi> </m:mrow> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>1</m:mn> <m:mo>+</m:mo> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mi>y</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> </m:mrow> </m:mrow> </m:mfrac> <m:mo>=</m:mo> <m:mrow> <m:mfrac> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>r</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mfrac> <m:mo>-</m:mo> <m:mfrac> <m:mrow> <m:mn>1</m:mn> <m:mo>+</m:mo> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mi>y</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> </m:mrow> </m:mrow> <m:mrow> <m:mi>λ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mrow> <m:mi>r</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>-</m:mo> <m:mrow> <m:mi>y</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>r</m:mi> <m:mi>y</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mfrac> </m:mrow> </m:mrow> <m:mo rspace=\"12.5pt\">,</m:mo> <m:mrow> <m:mrow> <m:mi>r</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0018.png\" /> <jats:tex-math>\\frac{r_{yy}(y)}{1+r_{y}(y)^{2}}=\\frac{n-1}{r(y)}-\\frac{1+r_{y}(y)^{2}}{% \\lambda(r(y)-yr_{y}(y))},\\quad r(y)&gt;0,</jats:tex-math> </jats:alternatives> </jats:disp-formula> in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0144.png\" /> <jats:tex-math>{(\\mu,\\infty)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> which satisfies <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>r</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>μ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0222.png\" /> <jats:tex-math>{r(\\mu)=0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mi>y</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>μ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mo>lim</m:mo> <m:mrow> <m:mi>y</m:mi> <m:mo>↘</m:mo> <m:mi>μ</m:mi> </m:mrow> </m:msub> <m:mo>⁡</m:mo> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mi>y</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo>+</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0252.png\" /> <jats:tex-math>{r_{y}(\\mu)=\\lim_{y\\searrow\\mu}r_{y}(y)=+\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove that there exist constants <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>y</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>&gt;</m:mo> <m:msub> <m:mi>y</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0138.png\" /> <jats:tex-math>y_{2}&gt;y_{1}&gt;0</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mi>y</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0133.png\" /> <jats:tex-math>r_{y}(y)&gt;0</jats:tex-math> </jats:alternatives> </jats:inline-formula> for any <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>μ</m:mi> <m:mo>&lt;</m:mo> <m:mi>y</m:mi> <m:mo>&lt;</m:mo> <m:msub> <m:mi>y</m:mi> <m:mn>1</m:mn> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0124.png\" /> <jats:tex-math>\\mu&lt;y&lt;y_{1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mi>y</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>y</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0134.png\" /> <jats:tex-math>r_{y}(y_{1})=0</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mi>y</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>&lt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0132.png\" /> <jats:tex-math>r_{y}(y)&lt;0</jats:tex-math> </jats:alternatives> </jats:inline-formula> for any <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>y</m:mi> <m:mo>&gt;</m:mo> <m:msub> <m:mi>y</m:mi> <m:mn>1</m:mn> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0137.png\" /> <jats:tex-math>y&gt;y_{1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mrow> <m:mi>y</m:mi> <m:mo>⁢</m:mo> <m:mi>y</m:mi> </m:mrow> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>&lt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0130.png\" /> <jats:tex-math>r_{yy}(y)&lt;0</jats:tex-math> </jats:alternatives> </jats:inline-formula> for any <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>μ</m:mi> <m:mo>&lt;</m:mo> <m:mi>y</m:mi> <m:mo>&lt;</m:mo> <m:msub> <m:mi>y</m:mi> <m:mn>2</m:mn> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0125.png\" /> <jats:tex-math>\\mu&lt;y&lt;y_{2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mrow> <m:mi>y</m:mi> <m:mo>⁢</m:mo> <m:mi>y</m:mi> </m:mrow> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>y</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0131.png\" /> <jats:tex-math>r_{yy}(y_{2})=0</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>r</m:mi> <m:mrow> <m:mi>y</m:mi> <m:mo>⁢</m:mo> <m:mi>y</m:mi> </m:mrow> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0249.png\" /> <jats:tex-math>{r_{yy}(y)&gt;0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for any <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>y</m:mi> <m:mo>&gt;</m:mo> <m:msub> <m:mi>y</m:mi> <m:mn>2</m:mn> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0265.png\" /> <jats:tex-math>{y&gt;y_{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Moreover, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mo>lim</m:mo> <m:mrow> <m:mi>y</m:mi> <m:mo>→</m:mo> <m:mrow> <m:mo>+</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:mrow> </m:msub> <m:mo>⁡</m:mo> <m:mrow> <m:mi>r</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0189.png\" /> <jats:tex-math>{\\lim_{y\\to+\\infty}r(y)=0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mo>lim</m:mo> <m:mrow> <m:mi>y</m:mi> <m:mo>→</m:mo> <m:mrow> <m:mo>+</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:mrow> </m:msub> <m:mo>⁡</m:mo> <m:mrow> <m:mi>y</m:mi> <m:mo>⁢</m:mo> <m:msub> <m:mi>r</m:mi> <m:mi>y</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>y</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2022-0092_eq_0190.png\" /> <jats:tex-math>{\\lim_{y\\to+\\infty}yr_{y}(y)=0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"10 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2022-0092","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We will give a new proof of the existence of non-compact homothetic solitons of the inverse mean curvature flow in n × {\mathbb{R}^{n}\times\mathbb{R}} , n 2 {n\geq 2} , of the form ( r , y ( r ) ) {(r,y(r))} or ( r ( y ) , y ) {(r(y),y)} , where r = | x | {r=|x|} , x n {x\in\mathbb{R}^{n}} , is the radially symmetric coordinate and y {y\in\mathbb{R}} . More precisely for any 1 n < λ < 1 n - 1 {\frac{1}{n}<\lambda<\frac{1}{n-1}} and μ < 0 {\mu<0} , we will give a new proof of the existence of a unique solution r ( y ) C 2 ( μ , ) C ( [ μ , ) ) {r(y)\in C^{2}(\mu,\infty)\cap C([\mu,\infty))} of the equation r y y ( y ) 1 + r y ( y ) 2 = n - 1 r ( y ) - 1 + r y ( y ) 2 λ ( r ( y ) - y r y ( y ) ) , r ( y ) > 0 , \frac{r_{yy}(y)}{1+r_{y}(y)^{2}}=\frac{n-1}{r(y)}-\frac{1+r_{y}(y)^{2}}{% \lambda(r(y)-yr_{y}(y))},\quad r(y)>0, in ( μ , ) {(\mu,\infty)} which satisfies r ( μ ) = 0 {r(\mu)=0} and r y ( μ ) = lim y μ r y ( y ) = + {r_{y}(\mu)=\lim_{y\searrow\mu}r_{y}(y)=+\infty} . We prove that there exist constants y 2 > y 1 > 0 y_{2}>y_{1}>0 such that r y ( y ) > 0 r_{y}(y)>0 for any μ < y < y 1 \mu<y<y_{1} , r y ( y 1 ) = 0 r_{y}(y_{1})=0 , r y ( y ) < 0 r_{y}(y)<0 for any y > y 1 y>y_{1} , r y y ( y ) < 0 r_{yy}(y)<0 for any μ < y < y 2 \mu<y<y_{2} , r y y ( y 2 ) = 0 r_{yy}(y_{2})=0 and r y y ( y ) > 0 {r_{yy}(y)>0} for any y > y 2 {y>y_{2}} . Moreover, lim y + r ( y ) = 0 {\lim_{y\to+\infty}r(y)=0} and lim y + y r y ( y ) = 0 {\lim_{y\to+\infty}yr_{y}(y)=0} .
反均值曲率流同向孤子存在的另一个证明
我们将给出一个新的证明:在 ℝ n × ℝ {mathbb{R}^{n}\times\mathbb{R}} 中存在反均值曲率流的非紧凑同调孤子。 , n ≥ 2 {n\geq 2} , 形式为 ( r , y ( r ) ) {(r,y(r))} 或 ( r ( y ) , y ) {(r(y),y)} , 其中 r = | x | {r=|x|} x ∈ ℝ n {x\in\mathbb{R}^{n}} ,是径向对称坐标。 是径向对称坐标,y∈ ℝ {y\in\mathbb{R}} 。 .更确切地说,对于任意 1 n < λ < 1 n - 1 {\frac{1}{n}<\lambda<\frac{1}{n-1}} 和 μ < 0 {\mu<0} ,我们将给出新的证明。 我们将给出一个新的证明,证明存在一个唯一的解 r ( y ) ∈ C 2 ( μ , ∞ ) ∩ C ( [ μ , ∞ ) ) {r(y)\in C^{2}(\mu,\infty)\cap C([\mu,\infty))}的方程 r y y ( y ) 1 + r y ( y ) 2 = n - 1 r ( y ) - 1 + r y ( y ) 2 λ ( r ( y ) - y r y ( y ) ) , r ( y ) > 0 , \frac{r_{yy}(y)}{1+r_{y}(y)^{2}}=\frac{n-1}{r(y)}-\frac{1+r_{y}(y)^{2}}{% \lambda(r(y)-yr_{y}(y))},\quad r(y)>;0, in ( μ , ∞ ) {(\mu,\infty)} which satisfies r ( μ ) = 0 {r(\mu)=0} and r y ( μ ) = lim y ↘ μ r y ( y ) = + ∞ {r_{y}(\mu)=\lim_{y\searrow\mu}r_{y}(y)=+\infty} .我们证明存在常数 y 2 > y 1 > 0 y_{2}>y_{1}>0,使得 r y ( y ) > 0 r_{y}(y)>0 for any μ < y < y 1 \mu<y<y_{1}。 , r y ( y 1 ) = 0 r_{y}(y_{1})=0 , r y ( y ) < 0 r_{y}(y)<0 for any y > y 1 y>y_{1} , r y y ( y ) < 0 r_{y}(y)<0 for any y > y 1 y>y_{1} , r y y ( y ) < 0 r_{yy}(y)<0 for any μ < y < y 2 \mu<y<y_{2} , r y y ( y ) < 0 r_{yy}(y)<0 for any μ < y < y 2 对于任意 y > y 2 {y>y_{2}} ,r y y ( y 2 ) = 0 r_{yy}(y_{2})=0 且 r y y ( y ) > 0 {r_{yy}(y)>0} 。 .此外,lim y → + ∞ r ( y ) = 0 {\lim_{y\to+\infty}r(y)=0} 和 lim y → + ∞ y r y ( y ) = 0 {\lim_{y\to+\infty}yr_{y}(y)=0} .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Calculus of Variations
Advances in Calculus of Variations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.90
自引率
5.90%
发文量
35
审稿时长
>12 weeks
期刊介绍: Advances in Calculus of Variations publishes high quality original research focusing on that part of calculus of variation and related applications which combines tools and methods from partial differential equations with geometrical techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信