The Channel Fading Influence of the Receiver Operating Characteristics of the TT&C Receiver Based on the Dual-Sequence Frequency Hopping

IF 1.1 4区 工程技术 Q3 ENGINEERING, AEROSPACE
Guangkai Liu, Jie Guo, Weizheng Xin, Cheng Cheng, Lu Wang
{"title":"The Channel Fading Influence of the Receiver Operating Characteristics of the TT&C Receiver Based on the Dual-Sequence Frequency Hopping","authors":"Guangkai Liu, Jie Guo, Weizheng Xin, Cheng Cheng, Lu Wang","doi":"10.1155/2024/1850204","DOIUrl":null,"url":null,"abstract":"Aimed at the antijamming needs of the space tracking, telemetry command (TT&C) receiver under a low signal-to-noise ratio, the anti-interference advantage of the dual-sequence frequency hopping (DSFH) communication system is applied. The channel amplitude fading influence of the receiver operating characteristics (ROC) of the TT&C receiver based on the DSFH is studied. Firstly, based on the typical channel model of the Rayleigh fading without direct path transmission, the conditional Fokker-Planck equation (FPE) is obtained by analyzing the statistical independence of the Rayleigh fading signal and SR output particle moments. Secondly, the probability density function (PDF) of the DSFH signal via channel Rayleigh fading enhanced by stochastic resonance (SR) is obtained by introducing the decision time. Thirdly, the detection probability, false alarm probability, ROC, and system bit error rate (BER) of the DSFH signals enhanced by SR under the Rayleigh fading conditions are obtained, under the minimum BER criterion. Finally, the conclusions are reached: one is that the DSFH signals via channel Rayleigh fading can still be detected by the SR system under low SNR, and the other one is that the SNR can reach the -13 dB by the reception of DSFH signal enhanced by SR, when the Rayleigh fading parameter is 0.2042.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"396 1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/1850204","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Aimed at the antijamming needs of the space tracking, telemetry command (TT&C) receiver under a low signal-to-noise ratio, the anti-interference advantage of the dual-sequence frequency hopping (DSFH) communication system is applied. The channel amplitude fading influence of the receiver operating characteristics (ROC) of the TT&C receiver based on the DSFH is studied. Firstly, based on the typical channel model of the Rayleigh fading without direct path transmission, the conditional Fokker-Planck equation (FPE) is obtained by analyzing the statistical independence of the Rayleigh fading signal and SR output particle moments. Secondly, the probability density function (PDF) of the DSFH signal via channel Rayleigh fading enhanced by stochastic resonance (SR) is obtained by introducing the decision time. Thirdly, the detection probability, false alarm probability, ROC, and system bit error rate (BER) of the DSFH signals enhanced by SR under the Rayleigh fading conditions are obtained, under the minimum BER criterion. Finally, the conclusions are reached: one is that the DSFH signals via channel Rayleigh fading can still be detected by the SR system under low SNR, and the other one is that the SNR can reach the -13 dB by the reception of DSFH signal enhanced by SR, when the Rayleigh fading parameter is 0.2042.
信道衰落对基于双序列跳频的 TT&C 接收机工作特性的影响
针对低信噪比条件下空间跟踪、遥测指令(TT&C)接收机的抗干扰需求,应用了双序列跳频(DSFH)通信系统的抗干扰优势。研究了信道幅度衰落对基于 DSFH 的 TT&C 接收机的接收机工作特性(ROC)的影响。首先,基于典型的无直接路径传输的瑞利衰落信道模型,通过分析瑞利衰落信号和 SR 输出粒子矩的统计独立性,得到条件福克-普朗克方程(FPE)。其次,通过引入决策时间,得到经随机共振(SR)增强的信道瑞利衰落的 DSFH 信号的概率密度函数(PDF)。第三,在最小误码率准则下,得到了瑞利衰落条件下经随机共振增强的 DSFH 信号的检测概率、误报概率、ROC 和系统误码率(BER)。最后得出结论:一是经信道瑞利衰落的 DSFH 信号在低信噪比条件下仍能被 SR 系统检测到;二是当瑞利衰落参数为 0.2042 时,通过 SR 增强的 DSFH 信号接收信噪比可达-13 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
195
审稿时长
22 weeks
期刊介绍: International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles. Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to: -Mechanics of materials and structures- Aerodynamics and fluid mechanics- Dynamics and control- Aeroacoustics- Aeroelasticity- Propulsion and combustion- Avionics and systems- Flight simulation and mechanics- Unmanned air vehicles (UAVs). Review articles on any of the above topics are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信