Green growth of mixed valence manganese oxides on quasi-freestanding bilayer epitaxial graphene-silicon carbide substrates

IF 8.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Michael Pedowitz, Daniel Lewis, Jennifer DeMell, Daniel J. Pennachio, Jenifer R. Hajzus, Rachael Myers-Ward, Soaram Kim, Kevin M. Daniels
{"title":"Green growth of mixed valence manganese oxides on quasi-freestanding bilayer epitaxial graphene-silicon carbide substrates","authors":"Michael Pedowitz, Daniel Lewis, Jennifer DeMell, Daniel J. Pennachio, Jenifer R. Hajzus, Rachael Myers-Ward, Soaram Kim, Kevin M. Daniels","doi":"10.1016/j.mtadv.2024.100467","DOIUrl":null,"url":null,"abstract":"<p>Nanostructured manganese oxides (MnO<sub>x</sub>) have shown incredible promise in constructing next-generation energy storage and catalytic systems. However, it has proven challenging to integrate with other low-dimensional materials due to harsh deposition conditions and poor structural stability. Here, we report the deposition of layered manganese dioxide (δ-MnO<sub>2</sub>) on bilayer epitaxial graphene (QEG) using a simple three-step electrochemical process involving no harsh chemicals. Using this process we can synthesize a 50 nm thick H–MnO<sub>2</sub> film in 1.25s. This synthetic birnessite is inherently water-stabilized, the first reported in the literature. We also confirm that this process does not cause structural damage to the QEG, as evidenced by the lack of D peak formation. This QEG heterostructure enhanced MnO<sub>2</sub>'s redox active gas sensing, enabling room temperature detection of NH<sub>3</sub> and NO<sub>2</sub>. We also report on transforming this δ-MnO<sub>2</sub> to other MnO<sub>x</sub> compounds, Mn<sub>2</sub>O<sub>3</sub> and Mn<sub>3</sub>O<sub>4</sub>, via mild annealing. This is confirmed by Raman spectroscopy of the films, which also confirms limited damage to the QEG substrate. To our knowledge, this is the first synthesis of Mn<sub>2</sub>O<sub>3</sub> and Mn<sub>3</sub>O<sub>4</sub> on pristine graphene substrates. Both methods demonstrate the potential of depositing and transforming multifunctional oxides on single-crystal graphene using QEG substrates, allowing for the formation of nanostructured heterostructures previously unseen. Additionally, the electrochemical nature of the deposition presents the ability to scale the process to the QEG wafer and adjust the solution to produce other powerful multifunctional oxides.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2024.100467","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanostructured manganese oxides (MnOx) have shown incredible promise in constructing next-generation energy storage and catalytic systems. However, it has proven challenging to integrate with other low-dimensional materials due to harsh deposition conditions and poor structural stability. Here, we report the deposition of layered manganese dioxide (δ-MnO2) on bilayer epitaxial graphene (QEG) using a simple three-step electrochemical process involving no harsh chemicals. Using this process we can synthesize a 50 nm thick H–MnO2 film in 1.25s. This synthetic birnessite is inherently water-stabilized, the first reported in the literature. We also confirm that this process does not cause structural damage to the QEG, as evidenced by the lack of D peak formation. This QEG heterostructure enhanced MnO2's redox active gas sensing, enabling room temperature detection of NH3 and NO2. We also report on transforming this δ-MnO2 to other MnOx compounds, Mn2O3 and Mn3O4, via mild annealing. This is confirmed by Raman spectroscopy of the films, which also confirms limited damage to the QEG substrate. To our knowledge, this is the first synthesis of Mn2O3 and Mn3O4 on pristine graphene substrates. Both methods demonstrate the potential of depositing and transforming multifunctional oxides on single-crystal graphene using QEG substrates, allowing for the formation of nanostructured heterostructures previously unseen. Additionally, the electrochemical nature of the deposition presents the ability to scale the process to the QEG wafer and adjust the solution to produce other powerful multifunctional oxides.

在准自由双层外延石墨烯-碳化硅衬底上绿色生长混合价锰氧化物
纳米结构锰氧化物(MnOx)在构建下一代能源存储和催化系统方面展现出了令人难以置信的前景。然而,由于苛刻的沉积条件和较差的结构稳定性,将其与其他低维材料集成具有挑战性。在此,我们报告了在双层外延石墨烯(QEG)上沉积层状二氧化锰(δ-MnO2)的过程,该过程采用简单的三步电化学工艺,不涉及刺激性化学物质。利用这一工艺,我们可以在 1.25 秒内合成出 50 nm 厚的 H-MnO2 薄膜。这种合成的桦烷石具有内在的水稳定性,这在文献中尚属首次报道。我们还证实,这一过程不会对 QEG 的结构造成破坏,没有 D 峰的形成就是证明。这种 QEG 异质结构增强了 MnO2 的氧化还原活性气体传感能力,实现了 NH3 和 NO2 的室温检测。我们还报告了通过温和退火将这种 δ-MnO2 转化为其他氧化锰化合物(Mn2O3 和 Mn3O4)的情况。薄膜的拉曼光谱证实了这一点,同时也证实了对 QEG 基底的破坏有限。据我们所知,这是首次在原始石墨烯基底上合成 Mn2O3 和 Mn3O4。这两种方法都证明了使用 QEG 基底在单晶石墨烯上沉积和转化多功能氧化物的潜力,从而可以形成以前从未见过的纳米异质结构。此外,沉积的电化学性质使其能够将工艺扩展到 QEG 晶圆,并调整溶液以生产其他功能强大的多功能氧化物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Advances
Materials Today Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.30
自引率
2.00%
发文量
116
审稿时长
32 days
期刊介绍: Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信