Biopolymer-based nanocomposites for application in biomedicine: a review

IF 1.7 4区 工程技术 Q4 POLYMER SCIENCE
Abdul Aziz Shaikh, Preetam Datta, Prithwish Dastidar, Arkadip Majumder, Maharghya Dyuti Das, Pratikrit Manna, Subhasis Roy
{"title":"Biopolymer-based nanocomposites for application in biomedicine: a review","authors":"Abdul Aziz Shaikh, Preetam Datta, Prithwish Dastidar, Arkadip Majumder, Maharghya Dyuti Das, Pratikrit Manna, Subhasis Roy","doi":"10.1515/polyeng-2023-0166","DOIUrl":null,"url":null,"abstract":"Biopolymer-based nanocomposites have gained significant attention in biomedicine due to their unique properties and potential applications. These nanocomposites combine biopolymers, natural polymers derived from renewable sources, with nanoparticles or other nanoscale materials to create materials with enhanced properties and functionalities. Biopolymers that are used to make bio-nanocomposites are cellulose, alginate, chitosan, starch, polylactic acid (PLA), polyhydroxyalkanoate (PHA), polyhydroxybutyrate (PHB), etc. These have different properties, and they can be used in several types of treatments. Scaffolds frequently employ polylactic acid-gelatin, nanocellulose, and chitosan. Studies have shown that some special types of hydrogel films have proven beneficial in anticancer treatment. Synthetic and naturally occurring substances such as PLA, polyvinyl alcohol (PVA), guar gum, and chitosan are employed in the drug delivery system. Nanocomposites such as silver nanoparticles with chitosan, sulfated polysaccharides, and thyme-loaded carrot nanocellulose or starch biopolymer nanocomposites have been used to stop bacterial development. This review article provides a comprehensive insight into biopolymer-based nanocomposites and their uses. Also, it has been incorporated into fields such as biosensors, bioimaging, blood clotting, immunomodulation, antibacterial and antiviral drugs, and food packaging. Hence, the primary objective of this review is to provide an overall perspective on biopolymer nanocomposites in nanomedicine.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/polyeng-2023-0166","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Biopolymer-based nanocomposites have gained significant attention in biomedicine due to their unique properties and potential applications. These nanocomposites combine biopolymers, natural polymers derived from renewable sources, with nanoparticles or other nanoscale materials to create materials with enhanced properties and functionalities. Biopolymers that are used to make bio-nanocomposites are cellulose, alginate, chitosan, starch, polylactic acid (PLA), polyhydroxyalkanoate (PHA), polyhydroxybutyrate (PHB), etc. These have different properties, and they can be used in several types of treatments. Scaffolds frequently employ polylactic acid-gelatin, nanocellulose, and chitosan. Studies have shown that some special types of hydrogel films have proven beneficial in anticancer treatment. Synthetic and naturally occurring substances such as PLA, polyvinyl alcohol (PVA), guar gum, and chitosan are employed in the drug delivery system. Nanocomposites such as silver nanoparticles with chitosan, sulfated polysaccharides, and thyme-loaded carrot nanocellulose or starch biopolymer nanocomposites have been used to stop bacterial development. This review article provides a comprehensive insight into biopolymer-based nanocomposites and their uses. Also, it has been incorporated into fields such as biosensors, bioimaging, blood clotting, immunomodulation, antibacterial and antiviral drugs, and food packaging. Hence, the primary objective of this review is to provide an overall perspective on biopolymer nanocomposites in nanomedicine.
基于生物聚合物的纳米复合材料在生物医学中的应用:综述
基于生物聚合物的纳米复合材料因其独特的性能和潜在的应用而在生物医学领域备受关注。这些纳米复合材料将生物聚合物(从可再生资源中提取的天然聚合物)与纳米粒子或其他纳米级材料结合在一起,创造出具有更强特性和功能的材料。用于制造生物纳米复合材料的生物聚合物有纤维素、海藻酸、壳聚糖、淀粉、聚乳酸(PLA)、聚羟基烷酸(PHA)、聚羟基丁酸(PHB)等。这些材料具有不同的特性,可用于多种类型的治疗。支架经常使用聚乳酸明胶、纳米纤维素和壳聚糖。研究表明,一些特殊类型的水凝胶薄膜已被证明有利于抗癌治疗。在给药系统中使用了聚乳酸、聚乙烯醇(PVA)、瓜尔豆胶和壳聚糖等合成和天然物质。银纳米粒子与壳聚糖、硫酸化多糖、百里香负载胡萝卜纳米纤维素或淀粉生物聚合物纳米复合材料等纳米复合材料已被用于阻止细菌发展。这篇综述文章全面介绍了基于生物聚合物的纳米复合材料及其用途。此外,它还被应用于生物传感器、生物成像、血液凝固、免疫调节、抗菌和抗病毒药物以及食品包装等领域。因此,本综述的主要目的是提供有关纳米医学中生物聚合物纳米复合材料的整体观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Polymer Engineering
Journal of Polymer Engineering 工程技术-高分子科学
CiteScore
3.20
自引率
5.00%
发文量
95
审稿时长
2.5 months
期刊介绍: Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信