Less is more: vegetation changes coincide with white-tailed deer suppression over thirty years

IF 4.3 1区 生物学 Q1 ECOLOGY
Joshua K. Pickering, Michael S. W. Bradstreet, D. Ryan Norris
{"title":"Less is more: vegetation changes coincide with white-tailed deer suppression over thirty years","authors":"Joshua K. Pickering,&nbsp;Michael S. W. Bradstreet,&nbsp;D. Ryan Norris","doi":"10.1002/wmon.1081","DOIUrl":null,"url":null,"abstract":"<p>Although ecological impacts of overabundant white-tailed deer (<i>Odocoileus virginianus</i>) are well documented in eastern North America, few studies have evaluated the long-term effects of adaptive deer population suppression after a period of overabundance. We examined vegetation community changes over a period of 30 years (1992–2021) on the Long Point Peninsula, Ontario, Canada following a &gt;85% reduction of a previously overabundant white-tailed deer population. We documented a significant increase in species diversity and shifts in the species composition of understory plants and woody vegetation. We then evaluated several hypotheses to explain these patterns. Our results provide support for the all-you-can-browse hypothesis, in which the abundance of woody stems above the browse layer did not increase within the first 3 years of sampling but, consistent within an expected period of recruitment, increased by &gt;1,500% from 1995–2021. We also found support for both the lawn maintenance hypothesis, with a significant decline in the proportional abundance of non-preferred species relative to preferred species, and for the seed bank hypothesis, with native species accounting for nearly 80% of new species observed over the sampling period. We conclude that the effective, long-term management and continued suppression of an previously overabundant white-tailed deer population can lead to increased vegetation community heterogeneity and diversity, which is likely one of the most important steps for the regeneration of woody stems and native vegetation communities.</p>","PeriodicalId":235,"journal":{"name":"Wildlife Monographs","volume":"214 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wildlife Monographs","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wmon.1081","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Although ecological impacts of overabundant white-tailed deer (Odocoileus virginianus) are well documented in eastern North America, few studies have evaluated the long-term effects of adaptive deer population suppression after a period of overabundance. We examined vegetation community changes over a period of 30 years (1992–2021) on the Long Point Peninsula, Ontario, Canada following a >85% reduction of a previously overabundant white-tailed deer population. We documented a significant increase in species diversity and shifts in the species composition of understory plants and woody vegetation. We then evaluated several hypotheses to explain these patterns. Our results provide support for the all-you-can-browse hypothesis, in which the abundance of woody stems above the browse layer did not increase within the first 3 years of sampling but, consistent within an expected period of recruitment, increased by >1,500% from 1995–2021. We also found support for both the lawn maintenance hypothesis, with a significant decline in the proportional abundance of non-preferred species relative to preferred species, and for the seed bank hypothesis, with native species accounting for nearly 80% of new species observed over the sampling period. We conclude that the effective, long-term management and continued suppression of an previously overabundant white-tailed deer population can lead to increased vegetation community heterogeneity and diversity, which is likely one of the most important steps for the regeneration of woody stems and native vegetation communities.

Abstract Image

Abstract Image

少即是多:植被变化与三十年来对白尾鹿的抑制相吻合
尽管在北美东部,白尾鹿(Odocoileus virginianus)数量过多对生态造成的影响已被充分记录,但很少有研究评估过量繁殖后适应性抑制白尾鹿数量的长期影响。我们考察了加拿大安大略省长角半岛在之前过度繁殖的白尾鹿种群减少 85% 之后 30 年(1992-2021 年)的植被群落变化。我们记录了物种多样性的显著增加以及林下植物和木本植被物种组成的变化。然后,我们对解释这些模式的几种假设进行了评估。我们的研究结果支持 "任你浏览 "假说,即在采样的头 3 年中,浏览层以上的木质茎的丰度并没有增加,但与预期的招募期一致,从 1995 年到 2021 年增加了 1500%。我们还发现,草坪维护假说和种子库假说都得到了支持,草坪维护假说认为,相对于偏好物种,非偏好物种的丰度比例显著下降;种子库假说认为,在采样期间观察到的新物种中,本地物种占了近 80%。我们的结论是,长期有效地管理和持续抑制以前过剩的白尾鹿种群,可以提高植被群落的异质性和多样性,这可能是木质茎干和本地植被群落再生的最重要步骤之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wildlife Monographs
Wildlife Monographs 生物-动物学
CiteScore
9.10
自引率
0.00%
发文量
3
审稿时长
>12 weeks
期刊介绍: Wildlife Monographs supplements The Journal of Wildlife Management with focused investigations in the area of the management and conservation of wildlife. Abstracting and Indexing Information Academic Search Alumni Edition (EBSCO Publishing) Agricultural & Environmental Science Database (ProQuest) Biological Science Database (ProQuest) CAB Abstracts® (CABI) Earth, Atmospheric & Aquatic Science Database (ProQuest) Global Health (CABI) Grasslands & Forage Abstracts (CABI) Helminthological Abstracts (CABI) Natural Science Collection (ProQuest) Poultry Abstracts (CABI) ProQuest Central (ProQuest) ProQuest Central K-543 Research Library (ProQuest) Research Library Prep (ProQuest) SciTech Premium Collection (ProQuest) Soils & Fertilizers Abstracts (CABI) Veterinary Bulletin (CABI)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信