Brownian Particle in the Curl of 2-D Stochastic Heat Equations

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Guilherme de Lima Feltes, Hendrik Weber
{"title":"Brownian Particle in the Curl of 2-D Stochastic Heat Equations","authors":"Guilherme de Lima Feltes, Hendrik Weber","doi":"10.1007/s10955-023-03224-1","DOIUrl":null,"url":null,"abstract":"<p>We study the long time behaviour of a Brownian particle evolving in a dynamic random environment. Recently, Cannizzaro et al. (Ann Probab 50(6):2475–2498, 2022) proved sharp <span>\\(\\sqrt{\\log }\\)</span>-super diffusive bounds for a Brownian particle in the curl of (a regularisation of) the 2-D Gaussian Free Field (GFF) <span>\\(\\underline{\\omega }\\)</span>. We consider a one parameter family of Markovian and Gaussian dynamic environments which are reversible with respect to the law of <span>\\(\\underline{\\omega }\\)</span>. Adapting their method, we show that if <span>\\(s\\ge 1\\)</span>, with <span>\\(s=1\\)</span> corresponding to the standard stochastic heat equation, then the particle stays <span>\\(\\sqrt{\\log }\\)</span>-super diffusive, whereas if <span>\\(s&lt;1\\)</span>, corresponding to a fractional heat equation, then the particle becomes diffusive. In fact, for <span>\\(s&lt;1\\)</span>, we show that this is a particular case of Komorowski and Olla (J Funct Anal 197(1):179–211, 2003), which yields an invariance principle through a Sector Condition result. Our main results agree with the Alder–Wainwright scaling argument (see Alder and Wainwright in Phys Rev Lett 18:988–990, 1967; Alder and Wainwright in Phys Rev A 1:18–21, 1970; Alder et al. in Phys Rev A 4:233–237, 1971; Forster et al. in Phys Rev A 16:732–749, 1977) used originally in Tóth and Valkó (J Stat Phys 147(1):113–131, 2012) to predict the <span>\\(\\log \\)</span>-corrections to diffusivity. We also provide examples which display <span>\\(\\log ^a\\)</span>-super diffusive behaviour for <span>\\(a\\in (0,1/2]\\)</span>.</p>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10955-023-03224-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study the long time behaviour of a Brownian particle evolving in a dynamic random environment. Recently, Cannizzaro et al. (Ann Probab 50(6):2475–2498, 2022) proved sharp \(\sqrt{\log }\)-super diffusive bounds for a Brownian particle in the curl of (a regularisation of) the 2-D Gaussian Free Field (GFF) \(\underline{\omega }\). We consider a one parameter family of Markovian and Gaussian dynamic environments which are reversible with respect to the law of \(\underline{\omega }\). Adapting their method, we show that if \(s\ge 1\), with \(s=1\) corresponding to the standard stochastic heat equation, then the particle stays \(\sqrt{\log }\)-super diffusive, whereas if \(s<1\), corresponding to a fractional heat equation, then the particle becomes diffusive. In fact, for \(s<1\), we show that this is a particular case of Komorowski and Olla (J Funct Anal 197(1):179–211, 2003), which yields an invariance principle through a Sector Condition result. Our main results agree with the Alder–Wainwright scaling argument (see Alder and Wainwright in Phys Rev Lett 18:988–990, 1967; Alder and Wainwright in Phys Rev A 1:18–21, 1970; Alder et al. in Phys Rev A 4:233–237, 1971; Forster et al. in Phys Rev A 16:732–749, 1977) used originally in Tóth and Valkó (J Stat Phys 147(1):113–131, 2012) to predict the \(\log \)-corrections to diffusivity. We also provide examples which display \(\log ^a\)-super diffusive behaviour for \(a\in (0,1/2]\).

二维随机热方程卷曲中的布朗粒子
我们研究的是在动态随机环境中演化的布朗粒子的长期行为。最近,坎尼扎罗等人(Ann Probab 50(6):2475-2498, 2022)证明了布朗粒子在二维高斯自由场(GFF)的卷曲(正则化)中的尖锐(\(\underline{\omega }\)-超级扩散边界。我们考虑了马尔可夫和高斯动态环境的一个参数族,这些环境对于 \(\underline{\omega }\) 规律来说是可逆的。根据他们的方法,我们证明如果(s=1)对应于标准的随机热方程,那么粒子就会保持(sqrt{log })-超级扩散性,而如果(s<1)对应于分数热方程,那么粒子就会变成扩散性。事实上,对于 \(s<1\),我们证明这是 Komorowski 和 Olla(《函数分析》杂志 197(1):179-211,2003 年)的一个特殊情况,通过扇形条件结果产生了不变性原理。我们的主要结果与 Alder-Wainwright 缩放论证一致(见 Alder 和 Wainwright 在 Phys Rev Lett 18:988-990, 1967;Alder 和 Wainwright 在 Phys Rev A 1:18-21, 1970;Alder et al.在 Phys Rev A 4:233-237, 1971; Forster 等人在 Phys Rev A 16:732-749, 1977)中最初用于预测扩散率的\(\log \)-修正的 Tóth 和 Valkó (J Stat Phys 147(1):113-131, 2012)。我们还提供了一些例子,这些例子显示了 \(a\in (0,1/2]\) 时的\(\log ^a\)-超级扩散行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信