The Riemann–Hilbert approach for the integrable fractional Fokas–Lenells equation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ling An, Liming Ling
{"title":"The Riemann–Hilbert approach for the integrable fractional Fokas–Lenells equation","authors":"Ling An,&nbsp;Liming Ling","doi":"10.1111/sapm.12672","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a new integrable fractional Fokas–Lenells equation by using the completeness of the squared eigenfunctions, dispersion relation, and inverse scattering transform. To solve this equation, we employ the Riemann–Hilbert approach. Specifically, we focus on the case of the reflectionless potential with a simple pole for the zero boundary condition. And we provide the fractional <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-soliton solution in determinant form. In addition, we prove the fractional one-soliton solution rigorously. Notably, we demonstrate that as <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>t</mi>\n <mo>|</mo>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$|t|\\rightarrow \\infty$</annotation>\n </semantics></math>, the fractional <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-soliton solution can be expressed as a linear combination of <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> fractional single-soliton solutions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a new integrable fractional Fokas–Lenells equation by using the completeness of the squared eigenfunctions, dispersion relation, and inverse scattering transform. To solve this equation, we employ the Riemann–Hilbert approach. Specifically, we focus on the case of the reflectionless potential with a simple pole for the zero boundary condition. And we provide the fractional N $N$ -soliton solution in determinant form. In addition, we prove the fractional one-soliton solution rigorously. Notably, we demonstrate that as | t | $|t|\rightarrow \infty$ , the fractional N $N$ -soliton solution can be expressed as a linear combination of N $N$ fractional single-soliton solutions.

积分分数福卡斯-勒内尔斯方程的黎曼-希尔伯特方法
本文利用平方特征函数的完备性、色散关系和反散射变换,提出了一种新的可积分分式 Fokas-Lenells 方程。为了求解这个方程,我们采用了黎曼-希尔伯特方法。具体来说,我们重点研究了零边界条件下具有简单极点的无反射势的情况。我们提供了行列式形式的分数 N 索利子解。此外,我们还严格证明了分数单孑子解。值得注意的是,我们证明了当|t|→∞$|t|rightarrow \infty$时,分数 N-soliton解可以表示为N个分数单soliton解的线性组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信